
Loom Technical Development 1 Brogan Bunt 01/03/11

Loom Technical Development [for those interested.]

Geometric Subdivision
During Spring session of 2010 I built a simple 2D and 3D animation and drawing engine for a first
year computational media class. I called it Loom in recognition of the Jacquard Loom, which served
as an early model for the computer and which was fundamentally concerned with managing the
replication of graphic textile patterns. The aim was to enable students to look beneath the hood of
computer graphic processes and to indicate the potential for creative tinkering and reconstruction.
The engine provided basic functions for producing regular polygonal shapes. All the points on
regular polygons are equidistant from the centre and all the sides are of equal length. A cube and an
equilateral triangle provide examples. The points that make up these basic shapes can then be
transformed in various ways – translated, scaled and rotated - to produce other, more complex shapes.
I began this project with the thought of adding one more feature – the capacity to subdivide a regular
polygonal shape into a finer polygonal mesh. Subdivision is a conventional means for lending 3D
shapes a more curved and organic feel.

The image above displays Catmull-Clark quadrilateral subdivision of a basic cube into something that
approximates a sphere. Note that the Catmull-Clark process involves both subdividing the shape and
repositioning the new points to produce the impression of natural curvature. I could have attempted to
implement the Catmull-Clark formula within the graphics engine, however, I was keen to work things
out for myself. I expected to spend perhaps a couple of days mucking around with the problem, but
things became more complicated and absorbing. Some simple experiments suggested other
possibilities. Very swiftly issues of smoothly curved 3D geometry slipped into the background and I
became more concerned with the potential for 2D recursive pattern-making.

Subdivisions Modes
Straight away I realised that it was easier to deal with subdivision in two dimensions rather than three,
so I considered how to subdivide 2D regular polygons. I started with a simple square and recognised
4 major types of subdivision: quadralinear, triangular, bifurcated and echoed.

Quadralinear Triangular Bifurcated Echoed

Loom Technical Development 2 Brogan Bunt 01/03/11

Quadralinear subdivision breaks a square into four smaller squares. The process involves the
following steps:

• calculating the centre of the square by averaging the existing points (the four corners)
• calculating the set of mid-points on each of the lines between the existing points
• proceeding in sequence from the first corner point (P0) to the last (P3), composing a new

polygon from the current corner (P0) to the next mid-point (M0), then to the centre and
finally to the mid-point given by the number of sides minus one added to the current
corner point index (M3 in this case).

Triangular subdivision is simpler. There is no need to calculate mid-points. The triangles are built
from the existing corners and the centre. Bifurcation appears simple but actually ends up being a bit
more complex. Echo is arguably not a form of subdivision at all, but a mode of internal doubling.
Nonetheless, it is convenient for my purposes to treat it as a form of subdivision. It involves scaling
the corner points around a notional center to produce a smaller (or larger, if you prefer) polygon.

To make things clear, what happens with subdivision is that the initial shape gets passed in as an input
parameter to the relevant subdivision function and a set of subdivision shapes gets calculated and
returned. The original shape is lost, except in terms of its implicit status within the new set of shapes.

Very importantly, we are not only dealing with squares. The subdivision functions need to work with
regular polygons that have any number of sides. The modes of subdivision defined above work on
any regular polygon that has at least 3 sides. Here, for instance, are the same functions applied to
equilateral triangles and pentagons.

Quad Tri Bi Echo

I should note that typically, once subdivision has passed through a couple of generations, regular
polygons become irregular polygons, but the functions still work.

Subdivision Functions
On the following two pages are the full set of subdivision functions incorporated in the Loom engine.

Loom Technical Development 3 Brogan Bunt 01/03/11

Subdivision Mode Info Triangle Square Pentagon

Quad Subdivide into a set four sided
polygons equal to the total number
of original sides

Quad_Bord Subdivide into a set of four side
border polygons equal to the total
number of original sides

Quad_Bord_Echo Same as Quad_Bord but also
includes echoed centre polygon

Quad_Bord_Double Subdivide into a set four sided
polygons equal to double the total
number of original sides

Quad_Bord_Double
_Echo

Same as Quad_Bord_Double but
also includes echoed centre
polygon

Tri Subdivide into a set triangular
polygons equal to the total number
of original sides (built from centre
and corners)

Tri_Bord_A Subdivide into a set triangular
polygons equal to the total number
of original sides (built from line
mid-points and corners)

Tri_Bord_A_Echo Same as Tri_Bord_A but also
includes echoed centre polygon

Tri_Bord_B Subdivide into a set triangular
polygons equal to the total number
of original sides (built from the
corners of a rotated internal echo
and the original corner points)

Tri_Bord_B_Echo Same as Tri_Bord_B but also
includes echoed centre polygon

Loom Technical Development 4 Brogan Bunt 01/03/11

Tri_Star Similar to Tri_Bord_B but builds
internal triangles rather than
borders.

Tri_Star_Fill Same as Tri_Star but also includes
border polygons

Tri_Bord_C Similar to Tri_Star and Tri_Bord_B
but calculates three triangular
subdivision for each original side

Tri_Bord_C_Echo Same as Tri_Bord_C but also
includes echoed centre polygon

Split_Vert Splits the shape into two polygons
that have the same number of sides
as the original shape

Split_Horiz Splits a polygon horizontally. Only
implemented for squares at this
stage.

Not
implemente
d yet

Not
implement
ed yet

Split_Diag Only implemented for even sided
polygons at this stage, odd sided
polygons just return a Split_Vert.

Echo Scales the original shape. Returns
both the original shape and the
echoed shape. Centre is calculated
relative to this shape. Central image
shows Quad subdivision followed
by Echo subdivision.

Echo_Abs_Center Same as above but center
calculated relative to the whole
image. Central image shows Quad
subdivision followed by
Echo_Abs_Centre subdivision.

Loom Technical Development 5 Brogan Bunt 01/03/11

Joining the Dots
These functions are all stitching functions. They link together
sets of points. These sets include:

• the original corner points (black)
• the center of the shape (red)
• the mid-points along each original side (grey)
• the scaled corner points (blue), which can also be

transformed (purple – here rotated)

Additional Parameters
There are a range of additional parameters that complicate the basic subdivision operations.

Parameter Description

Randomised
centre point
value

The centre point can be
randomised slightly or
greatly depending on the
value supplied. Low values
(e.g. 2) produce high
variability. High values
(e.g. 12) produce less
variability.

Quad subdivision
with value 6
randomisation of
the centre

Line ratios So called 'mid-points' can be
positioned anywhere along
the line depending upon the
pair of values supplied.
Values are typically
between 0 and 1 to keep
inside the existing line.

Quad subdivision
with line ratios set
to 3 and 7

Echo
transformations

Echoed shapes can have
their width, height, scale,
rotation and translation
specified.

Echo with width
and height
independent scaling

Echo with scaling
and rotation

Ech

o with scaling,
rotation and
translation

Align shapes
after
subdivision

Due to the way many
subdivision operations
proceed in sequence from
first corner point to the last,
shapes can be built with
awkward alignments. You
can line everything up (if
you like) with the align
command.

Quad subdivision
followed by
Split_Vert
subdivision

Quad subdivision
followed by align
command and
then Split_Vert
subdivision.
(Also employs
rotate command –
a standard
polygon
transform.

Quad and then
Split_Diag

Same but with the
align command
after the initial
Quad subdivision

Loom Technical Development 6 Brogan Bunt 01/03/11

Continuous Works with line ratios to
ensure adjacent polygons
line up.

Two generations of
quad subdivision
with continuity set
to true

The same but with
continuity set to
false

Polygon
visibility

You can define which
polygons in a subdivision
are visible (every third,
random 1 in 10, etc.). Only
affects the last generation of
subdivision.

Quad subdivision
with alternate-even
visibility rule (note
quad subdivision
proceeds clockwise
from top left)

Quad subdivision
with alternate-odd
visibility rule

Recursive Subdivision
The key creative pattern-making potential lies not in any specific motion of subdivision but in their
capacity to be stacked one on top of the other. Subdivision is typically arranged recursively. One
generation of subdivision is followed by another, producing a rapidly more finely tessellated mesh
and emergent dimension of pattern related to the interplay between generations. Only the final
generation ever appears but it reveals the structure of all the generations that preceded it. Some
simple examples.

Two simple Quad
subdivisions

Qua
d subdivision
followed by Quad-
Bord_Echo
subdivision

Qua
d subdivision
followed by Tri
subdivision

Quad
subdivision followed
by Tri-Star
subdivision

Quad subdivision
followed by Tri-
Star_Fill subdivision

Here are some slightly more complex examples that involve a mixture of quadralinear and triangular
subdivision.

Sequence: Quad, Quad, Quad, Tri

Sequence: Quad, Quad, Tri, Tri

Sequence: Quad, Tri, Quad, Tri

Loom Technical Development 7 Brogan Bunt 01/03/11

Sequence:
Tri,
Quad,
Quad,
Quad

Sequence: Tri, Quad, Quad, Tri Sequence: Tri, Quad, Tri, Quad

Folds, Peaks and Troughs
I mentioned earlier that one of the program parameters specifies the extent of randomisation of
subdivision centres. Over a number of generations this produces terrain like effects. Bits of the mesh
get stretched, folded and scrunched up. This is very similar to how Perlin noise produces ordered
randomisation in a range of media – although my version was discovered by accident. I was not
aware how the work of recursive subdivision would lend structure to random processes, shaping
tendencies, peaks and troughs rather than uniformly distributed effects.

Sequence: Quad, Quad, Quad,
Quad. No randomisation of
subdivision centres.

Sequence: Quad, Quad, Quad,
Quad. Randomisation of
subdivision centres (value 6).

Sequence: Quad, Quad, Quad, Quad.
Randomisation of subdivision
centres (value 1.2).

Final Notes
The subdivision operations and overall graphics engine lack any kind of graphic user interface (GUI).
The program enables only programmatic control. I have left it this way for a number of reasons. The
aim is to expose dimension of code, not hide them. Building a GUI tends to take at least as long, if
not much longer, than building the underlying logical system and tends to slow and constrain further
development of the software. Having built a number of GUI graphics applications in the past, I know
that they rarely get used, even by myself, once the original body of work is completed.

The engine is written in Scala and reads a range of configuration and data files. It outputs either
single images or sequences of images. These images can be output at any resolution depending up
machine RAM limits.

The Loom project is open-source. An original command line version resides on git-hub
(http://github.com/brogan/Loom). Since then I have shifted the project to the Eclipse integrated
development environment (IDE) and plan to update the git-hub site soon.

One last thing. I have experimented with subdividing bezier curve
shapes. This is a bit more complex because it involves calculating
mid-points on curved lines. I have the basic system working but it
needs to be carefully integrated within the subdivision code base.
Here is an example of a subdivided bezier curve shape.

