
   i

 

 

 

 
School of Fish, Anachronism, 2007 (Bunt) 



   ii



   iii

Preface 

This monograph represents the written portion of a PhD thesis which focused on 

the contemporary field of software art.  The other portion of the study was a set of five 

creative new media works.  At one level these works provide examples of software art, 

but at another level they raise questions concerning the nature and boundaries of the 

genre.  Rather than imagining a clearly delineated and integral aesthetic field, my focus - 

at both a practical and theoretical level - is upon exploring dimensions of discomfort, 

uncertainty and opening. 

I thank my supervisors Professor Diana Wood Conroy and Professor Amanda 

Lawson for their valuable advice and encouragement. Thanks to my wife, Deborah 

Jenkin, for providing vital editing assistance and to my father, Professor John Bunt, and 

stepmother, Eleanor Bunt, for helping talk through the ideas.  More generally, thanks to 

my family - particularly Deborah, Axel, George and Sam – for permitting my strategic 

retreat from family engagements while I wrote this work in the summer of 2006-7. 

I dedicate this work to my mother, Joan Aileen Vance, who died in late 2005.  Her 

love, support and creative energy are much missed.  As a painter she never quite 

understood my interest in computers and my efforts at explanation always seemed 

inadequate.  Not sure if this work would have helped much, but I regret that she did not 

have the opportunity to read it. 

 

 

 



   iv



   v

Table of Contents 

Section Title Page 

Frontispiece School of Fish, Anachronism i 
Preface  iii 
Table of Contents  v 
List of Figures  vii 
   

Chapter 1 Introduction 1 
Chapter 2 Software 7 
Chapter 3 Code 25 
Chapter 4 Software Art 45 
Chapter 5 Oblique Reflections 67 
Chapter 6  Software Art and the Instrumental 85 
Chapter 7 Openings 109 
Chapter 8 Conclusion 123 
   
Bibliography  127 
Creative Works  133 
 



   vi



   vii

List of Figures 

Chapter Figure Title Page 

3 1 The notion of a variable 26 
3 2 The notion of a generic function 27 
3 3 ‘Spaghetti’ code 29 
3 4 Structured programming 30 
5 5 Brogan Bunt, Anachronism (2006) 82 
6 6 Brogan Bunt, Cropper_Propper_Gridder (2005) 

design concept 
102 

6 7 Brogan Bunt, Cropper (2005) interface 104 
6 8 Brogan Bunt, Propper (2005) interface 104 
6 9 Brogan Bunt, Gridder (2005) interface 105 
6 10 Brogan Bunt, Gridder (2005), Ice Time exhibition 

(2005) 
105 

7 11 Brogan Bunt, Halfeti – Only Fish Shall Visit (2001) 112 
7 12 Brogan Bunt, Halfeti – Only Fish Shall Visit (2001) 116 
7 13 Brogan Bunt, Hotel (2002) 117 
7 14 Brogan Bunt, Hotel (2002) spatial elements 117 
7 15 Brogan Bunt, Hotel (2002) 118 
7 16 Brogan Bunt, Hotel (2002) 118 
7 17 Brogan Bunt, Walk (2006) 120 
7 18 Brogan Bunt, Paphos (2006) 121 

 



   viii



   1

Chapter 1 
________________________________________________________________________ 

Introduction 

 

This study focuses on the emerging field of software art.  Rather than imagining the 

naturalness of this field, my concern is with problems that confront any effort to think 

software in terms of art and art in terms of software.  Software production appears 

conventionally as a form of engineering – perhaps more abstract than the engineering of 

bridges, buildings and ships, but involving a similar concern with issues of logic, 

efficiency and functioning.  Although art as a form of making also partakes of these 

concerns, its fundamental interests appear different, even antithetical.  Instead of logic 

there is imagination and beauty.  Instead of efficiency there is expression, gesture and 

‘non-productive expenditure’ (Bataille, 1985: 117).  Instead of functional utility there is 

the aesthetic, reflective regard for the non-instrumental, material-sensible thing.  In its 

engagement then with the language and institution of software – especially in the 

necessity that software art literally function, that it operate – art is compelled to 

reevaluate its sense of cultural identity.  This encounter between two distinct modes of 

making takes shape not only as a set of dilemmas – of position, of association, of 

orientation and of delineation – but also, in an integral manner, as a field of creative 

possibility.  Software programming discovers a ‘speculative’ (Fuller, 2003: 29) aesthetic 

dimension and art discovers a mode of practice that cannot be reduced to the twin 

removes of rarefied formalism or autonomous critique.  

Background 

This monograph is the consequence of just over a decade’s sustained creative 

engagement with the field of computer programming.  My background is in the field of 

media theory and production.  Sometime in the mid-1990s I became interested in the then 

expanding field of multimedia.  Fiddling around with ‘creative software’ applications 

such as Macromedia Director and Flash led me from basic slideshows and interactive 



   2

websites to the reinvention of simple arcade games and more ambitious projects.  As my 

programming skills improved, I found myself moving away from proprietary multimedia 

software applications to more general, system-level programming languages such as Java.  

I was no longer a media producer who dabbled in programming; I had become a 

programmer who dabbled in media production.  While I produced all kinds of projects 

during this time – the interactive documentary project, Halfeti – Only Fish Shall Visit 

(2001), the experimental game project, Hotel (2002), the large oral-historical website, 

Midland Railway Workshops (2003), and the meditation on decomposed video time, 

Cropper_Propper_Gridder (2005) – I was increasingly aware that my practice was 

awkward to describe.  It could be called ‘multimedia’ or ‘new media’, but this seemed to 

ignore the vital dimension of code.  My work was very much about re-imagining media 

in terms of the language and discursive forms of computer programming.  Lacking a 

better term, I tended to describe my more experimental, less professionally-geared 

projects as ‘code-based art’.  I was very pleased a few years ago when I came across the 

term ‘software art’ because it provided a context for my work that extended beyond 

simple technical determination and beyond the endless effort to distinguish ‘old media’ 

from ‘new media’.  The notion of software art, as articulated by authors such as Florian 

Cramer (2002) and Mathew Fuller (2003), opened up a vital means of making sense of 

my work within a larger art-historical and conceptual context.  This study represents an 

effort to elaborate this understanding in a formal and systematic manner. 

My interest in the field of software art is not exclusively critical or theoretical.  I 

write as a practitioner and focus upon issues that arise within my own work.  While 

software art takes characteristic shape in work of formalist abstraction and political meta-

commentary (Cramer, 2002: 10), my own work reveals a continuing interest in issues of 

representation, media and mediation that links back to my earliest concern with 

photography, video art and experimental audio.  One of my key arguments is that this 

concern with traditional issues of media and representation need not be regarded as 

irrelevant or antithetical to a concern with software art.  Software art can do more than 

simply reflect upon its apparent self-contained material and cultural conditions.  It is 

constituted by openings rather than by any horizon of self-collected closure.  I also 

deliberately avoid drawing a clear line between media and software.  Rather than 



   3

stressing areas of fundamental difference, my focus is upon areas of common interest and 

underlying continuity.  Overall, a consideration of my own work provides a means of 

developing a conception of software art as a permeable discursive space that engages 

fundamental cultural tensions. 

Here are the five major works that I consider: 

• Halfeti – Only Fish Shall Visit (2001) is a navigable record of a small Turkish 

town on the banks of the Euphrates River prior to its flooding by a large hydro-

electrical project. It links together aspects of traditional documentary and spatial 

exploratory gaming. 

• Hotel (2002) is an ironic reflection upon notions of generative digital space.  

Instead of infinite vistas, it imagines a claustrophobic, recursive and minimally re-

combinatory space – an endless sequence of repetitive (and surreal) hotel 

corridors.  

• Cropper_Propper_Gridder (2005) is a suite of tools for representing video as a 

grid of temporally independent sequences.  The initial project focused on video of 

the Ross Sea region of Antarctica.  The aim was to discover a perverse sense of 

duration within time's mechanical dislocation. 

• Anachronism (2006) is a deliberately primitive and poorly featured 3D graphics 

engine.  It explores creative drawing and rendering possibilities by stripping away 

the sophistication of contemporary 3D graphics engines and by abandoning their 

typical emphasis on visual realism and naturalistic representation. 

• Paphos (2006) documents the margins of an Australian archaeological project in 

Paphos, Cyprus.  While not a literal code-based work, it represents a thinking of 

space, time and the formal possibilities of video in terms of the logic of code. 

Further information about these works, as well as relevant downloads, are available 

at my website: http://www.broganbunt.net/ 

Returning to my theoretical argument, my approach is strongly informed by strands 

of post-structuralist philosophy which question the traditional opposition between the 

human and the technological.  Rather than being cast as an altogether alien phenomenon, 



   4

which appears either (and both) as a subservient tool or as an exterior threat, technology 

comes to be associated, more positively, with a dimension of enabling non-identity that 

provides the basis (and non-basis) for any space of manifestation.  Most famously, the 

French philosopher Jacques Derrida (1976) argues that ‘speech’ is actually preceded by 

the logical possibility and material operations of ‘writing’.  If there is the possibility of 

speech, according to Derrida, then it is not as the index of a pure domain of self-present 

thought but of the play of (technological) signs.  More recently, another French 

philosopher, Bernard Stiegler (1998), argues that human culture is characterized precisely 

by the elaboration of a technological exterior (‘As a “process of exteriorisation,” technics 

is the pursuit of life by means other than life’ (Stiegler, 1998: 17)).  From this 

perspective, technology appears as an intimate human potential which serves also to 

announce the limits of the human (as traditionally conceived). 

For my purposes, this unsettling of the boundaries between the human and the 

technological provides a means, more particularly, of questioning the relation between art 

and software.  Software programming provides a vehicle for choreographing aspects of 

technical functioning.  Programming represents a space of rational, instrumental 

abstraction that is oriented towards fashioning a space of unconscious, non-reflective 

operation.  Both of these dimensions – the one rational and the other dumbly mechanical 

- work to disturb the reflectively constituted autonomy of critical avant-garde art.  To 

engage aesthetically with software is not only to summon it to the table of art, it is to risk 

a passage into the aesthetic alienation of instrumental reason and technical process. 

Chapter Outline 

I begin (Chapter 2) by examining how the software-hardware relation is conceived 

within computer science and how four key new media and software art theorists conceive 

the cultural and aesthetic character of software.  Overall, I stress that software represents 

a mixed technical and cultural space which opens up a dialogue between machine and 

human and combines elements of abstraction and materiality. 

Chapter 3 addresses computer programming specifically, providing an overview of 

the main formal features of high-level language programming and considering a variety 

of competing – at times opposed – perspectives concerning the nature of programming 



   5

practice. The aim is to explain fundamental coding in non-technical terms and to tease 

out its ambiguity as a mode of cultural practice. 

With a conception of software and computer programming in place, Chapter 4 

moves on to consider the contemporary field of software art, discussing its history and 

theoretical conception and examining the split between formalist and critical-cultural 

tendencies.  The final portion of the chapter specifies three dilemmas that confront 

software art as a mode of creative practice:  

1. Cultural position - how can software art conceive its relation to the larger 

economic and discursive space of the software industry? 

2. Aesthetic visibility - how can software art conceive its efforts to make code 

visible when software itself determinedly, structurally, hides? 

3. Recursive focus - how is software art to avoid an exclusive and disabling 

emphasis on critical self-reflection? 

The following three chapters pursue each of these dilemmas in greater detail.  

Chapter 5 examines the first dilemma of cultural position within the specific context of 

considering a range of strategic aesthetic means of engaging with the industrial-

discursive space of the 3D graphics engine.  I focus particularly on the strategy of 

anachronism, which involves resisting the rhetoric of cutting-edge novelty and 

deliberately re-working aspects of the coding (graphics) tradition.  Chapter 6 addresses 

the second dilemma of aesthetic visibility, which in my view is closely linked to the 

problem of the instrumental character of software.  Software processes hide in order to 

function.  Rather than resisting the instrumental, I argue that software art should 

acknowledge its inevitable relation to the dimension of functional process and engage 

with it as a field of poetic potential.  As a means of highlighting problems associated with 

the repression of the instrumental within software art, I consider the awkward positioning 

of one of my own works, Cropper_Propper_Gridder, which takes vital shape as an 

engine and a suite of tools.   Chapter 7 addresses the third dilemma of recursive focus.  

This dilemma relates to the sense of closure in software art – the sense that it can do 

nothing but reflect upon its own conditions.  Opposing this model of disabling self-



   6

reflection, I describe a range of specific possibilities of opening that are relevant to my 

own work (focusing specifically on strategies evident in Halfeti – Only Fish Shall Visit 

and Hotel). 

The concluding chapter (Chapter 8) summarizes my argument and suggests the 

need for a new conception of software art practice.  Rather than adhering to the twin 

fantasies of pure software formalism or pure software critique, there is a need to explore a 

messier, more complicit and more open space of creation.  The various dilemmas of 

software art undermine the possibility of settled generic identity and highlight the need 

for a continuing process of exploration and experimentation. 

 

 



   7

Chapter 2 
________________________________________________________________________ 

Software 

 

Introduction 

Software is an ambiguous space, partly entwined in the alien complexity of binary 

processes and partly shaping multiple layers of human access.  It abides within the 

machine but is also abstracted from it.  As a vital context for choreographing the logic of 

technical systems and dimensions of human interaction, software programming mediates 

between the mechanical and the human, the abstract and the material, and the 

instrumental and the aesthetic.  In its refusal to fall on one side or the other of these 

conventional oppositions, the work of software creation appears as a space of dialogic 

exchange and unsettling. 

Software shares the suffix ‘ware’ with its semantic other, hardware.  

Conventionally, the term ‘ware’ denotes ‘articles of merchandise or manufacture, or 

goods’ (Macquarie, 1992).  It suggests a context of physical manufacturing and sale.  The 

metaphor of traditional material-economic relations provides then a means of 

conceptualizing the less directly accessible processes and products of the information 

economy.  For my purposes, the presence of ‘ware’ within ‘software’ serves as a sign of 

an element of semantic and cultural-contextual tension.  Despite the importance of the 

commercial art market, works of art tend not to be conceived as ‘wares’ but as critical, 

expressive, non-instrumental things.  Alongside any thinking of the relation between 

technical computer science and the sphere of art practice, the juxtaposition of ‘software’ 

and ‘art’ also brings into play broader issues of art’s notional differentiation from the 

‘non-art’ spheres of industry and commerce (and instrumental rationality generally). 

This chapter considers how software is conceived within computer science, as a 

basis for then examining various cultural theoretical perspectives on software.  My 

particular interest is in how the contemporary critical and creative concern with software 

programming emerges as a reaction to the notion of new media. 



   8

Software and Computation 

In the early 19th century, the British industrial inventor, Charles Babbage, designed 

three (partly realized) calculating engines.  The first two engines, Difference Engines 

no.1 and no.2, were machines for calculating fixed tables of values.  The last machine, 

the Analytical Engine, was a more ambitious project which was never actually 

completed.  It was envisaged as a general purpose machine that could perform any 

specific mathematical algorithmic process.  The structure of this flexible, programmable 

machine was articulated in terms of analogies from the field of industrial textile 

manufacturing.  It was composed of a ‘store’ that held values (raw yarn and finished 

textiles), a ‘mill’ that processed (wove) the yarn into textiles, and ‘trains’ of logical 

procedures that controlled the functioning of the ‘mill’ (Babbage, 2005: 282-293).  In 

terms of contemporary computation, the ‘store’ represents memory, the ‘mill’ represents 

the central-processing unit, and the ‘trains’ (of thought) represent software. While there 

was no direct analogy from textile manufacturing to describe software, this vital work of 

logical coordination was to be implemented through punch cards borrowed from the 

technology of the Jacquard Loom (an early technology for mechanizing the production of 

patterned textiles).  In this sense, the binary, array-based patterns of the Jacquard Loom 

punch cards provide a link between long cultural traditions of textiles practice and the 

emerging technology of computation.  For me, this is suggestive of the opening of 

computation to a legacy of logical and aesthetic pattern-making that long precedes the 

specific forms of digital media.  

The design of the Analytical Engine indicates the centrality of software to the 

conception of modern computing.  A computer is conceived as a flexible machine rather 

than as a traditional, single-purpose mechanical device.  The dimension of programmable 

software is what enables a computer to be reconfigured as a typewriter, a darkroom, a 

video-editing system, a public forum, and so on.  If industrialization produced a plethora 

of complex single purpose machines, post-industrialization produces a core generic 

machine that can adopt multiple forms - that can simulate other machines via the 

dimension of programmatic abstraction. 



   9

In 1936, exactly one century after Babbage began work on his Analytical Engine, 

the British mathematician Alan Turing (1995) described the structure and discrete 

functioning of a ‘universal machine’ (Agar, 2001; Copeland, 2004).  This virtual machine 

could be programmed, like the Analytical Engine, to perform any specific mathematical 

operation.  There was, however, a crucial point of difference.  Whereas Babbage had 

struggled to implement decimal numerical representation, Turing represented dimensions 

of value and procedural process in a common binary numerical format.  Both 

instructional code and calculated results were conceived as sequences of 0s and 1s, which 

provided the crucial key to constructing an actual computer.   This synthetic 

representation worked simultaneously to abstract dimensions of material value and to 

materialize dimensions of symbolic logic.  The richness of complex things (texts, images, 

sounds, etc.) finds itself amenable to binary articulation while processes of logical 

abstraction (mathematical algorithms) become embedded within a common material-

digital substance.  Furthermore, the latter gain the capacity to execute, to directly affect 

the realm of digitally articulated things. 

Computer science withdraws from this dimension of (metaphysical) uncertainty to 

the extent that it conceives software as opposed to hardware.  In conventional terms, 

hardware refers to the physical-mechanical and electronic aspects of computation 

(physical memory, input-output devices, etc.) whereas software designates the set of 

formal instructions that direct machine processes and that are abstracted from the material 

layer of digital circuitry (see, for example, Farouzan, 2003).  Software, as a logical 

algorithmic system, is conceived as floating above the hardware layer.  Relative to the 

material solidity of bits and pieces of metal and silicon, software appears virtual and 

immaterial.  While justifiable as a means of relative differentiation, this common sense 

distinction obscures the vital sense in which computation works to unsettle the opposition 

between the abstract and the material. 

When Turing first described the modern computer in his 1936 paper ‘On 

Computable Numbers, with an Application to the Entscheldungsproblem’, he described a 

hypothetical machine that was designed, in fact, to pinpoint the limits of mechanical 

computation (via the strategy of a recursive reductio ad absurdum) (Feynman, 1996: 81).  



   10

In this sense, the computer was originally a speculative, immaterial, ‘soft’ machine that 

‘functioned’ to provide a critique of the possibility of absolutely determinable 

(mechanical) outcomes.  At a more general level, the modern computer and its underlying 

digital circuitry is the material embodiment of the abstract system of Aristotelian logic.  

In the 19th century the mathematician, George Boole, represented this binary logical 

scheme in algebraic terms and in the 20th century the telecommunications engineer, 

Claude Shannon, represented it in physical electronic terms.  The positive and negative 

charges of digital circuits are ‘hard’ to the extent that they are physical, material and 

machine-based, but their material operation is thoroughly determined by a corresponding 

space of ‘soft’, speculative abstraction. 

Similarly, although software can be regarded as immaterial in its abstract, symbolic 

character and in its emphasis on the virtual and potential nature of any given operational 

system, it remains materially bound.  The underlying instructions must be written.  Text 

files are compiled into binary files which are then executed or interpreted to create 

patterns of discrete voltages in RAM.  The code layer is scarcely ever visible to the end-

user (it is hidden beneath the interface) and the speed of software operations (at the 

machine level) typically exceeds the capacities of human perception, but material 

processes are nonetheless still at play. 

Overall, then, the neat distinction between hardware and software misses the point.  

Computation, as both software and hardware, highlights a dimension of ambiguity in the 

relation between matter and non-matter.  It structures permeable relations between spaces 

of virtual, symbolic abstraction and material, instrumental functioning.   

Alongside its notional immateriality, software also represents a channel of ‘soft’, 

human access to the invisible and arcane functioning of the digital machine.  Access is 

enabled at a number of different levels.  At the lowest levels, machine code and assembly 

language provide very intimate (relatively ‘hard’) access to machine functioning, doing 

very little to protect the programmer from the demands of binary and hexadecimal modes 

of representation, the intricacies of central processor functioning and the complexities of 

system architecture (buses, memory registers, devices and the like).  Higher-level 



   11

language computer programming, while obscure to non-programmers, provides a more 

accessible and natural language-based means of choreographing digital processes.  

Underlying mechanisms are abstracted, opening up a realm of communication between 

human and machine modes of representation and processing.  C, C++ and Java are 

common examples of high-level programming languages.  At the top (most abstract) 

level, graphic user interface (GUI) application software provides the ‘softest’ point of 

access to the computer.  The conventional and never quite satisfactorily attainable aim of 

GUI developers is to make software operation seem as natural, human and intuitive as 

possible – to make the machine, and the relation to the machine, effectively disappear.  

In slipping between the technical ‘back-end’ of coded machine instructions and the 

experiential ‘front-end’ of the graphic user interface, software emerges within computer 

science as a multi-layered and elusive concept, resisting all attempts to pin it down to any 

one essential material or virtual state and to any one side of the human/machine divide.  

My specific interest is in the intermediary space of high-level language programming.  In 

the following chapter I offer a non-technical overview of the field, considering both its 

formal features and its character as a specific mode of creative practice.  In the remainder 

of this chapter I consider a variety of contemporary conceptions of the creative space of 

software. 

Conceiving Software 

The German media theorists, Florian Cramer and Ulrike Gabriel, argue that the 

sphere of software production ‘has a long history of being overlooked as artistic material 

and as a factor in the concept and aesthetics of a work’ (Cramer and Gabriel, 2001: 1).  

The contemporary concern with software art emerges as a reaction to the dominant 

conception of digital art as a new form of media.  The jury statement for the 2001 Berlin 

transmediale.01 festival software art award pointedly distinguishes their concern with 

software from a more conventional concern with media: 

This award is not about what is commonly understood as multimedia – where the 

focus is on data that can openly been [sic] seen, heard and felt.  This award is 



   12

about algorithms; it is about the code which generates, processes and combines 

what you see, hear and feel. (Transmediale.01 Media Arts festival jury, 2001) 

The creative work of software programming slips into the background of new 

media practice not only because it is hidden from view but also because it has all too 

often relegated to a sphere of aesthetically irrelevant technical implementation. 

Despite this sense of resistance to the notion of new media, it needs to be 

acknowledged that the possibility of software art has emerged from within the thinking of 

new media.  The ‘newness’ of the latter has inevitably demanded a close consideration of 

the computational conditions of contemporary media.  The creative field of software 

production has gained prominence as artists have developed increased computational 

literacy and new media theory has engaged more thoroughly with the implications of 

linking media and computation. 

Moreover, from a wider perspective, it is evident that the critique of the modernist 

conception of an aesthetic medium has an important basis in currents of media arts 

practice, particularly video art, that raise fundamental questions about the relevance of 

characterizing a medium in terms of its intrinsic material characteristics.  Rosalind 

Krauss (1999) argues that video art represents a conceptually-inclined amalgam of 

different media elements (sound, film, performance, electronics, etc.) that undermine 

efforts at reductive essentialist definition.  In this sense media art has played a vital role 

in shaping the thinking and character of ‘the post-medium condition’ (Krauss, 1999:32).  

If contemporary software art can question the emphasis on sensible media, it is because 

media art itself has historically posed these questions. Since the mid-19th Century 

photography has projected an alternative to sensible, manual, human-image making, 

suggesting a thinking of machine-vision, automation and ‘mechanical reproduction’ 

(Benjamin, 1977: 385) that has proved profoundly disruptive for traditional, sense-

oriented aesthetics.  Post 1960s media art extends upon this rupture, fashioning images 

and sounds as electronic signals and emphasizing that human processes of perception and 

representation are profoundly shaped and affected by technological modernity.  Software 

art’s concern with programmatic abstraction appears less as a refutation of media/new 



   13

media art than as a further elaboration of the latter’s underlying concerns and as a logical 

extension of a more general motion of aesthetic critique.  

The critical work of Lev Manovich provides a clear example of how a concern with 

software can emerge from a concern with new media. 

From Media to Software 

In The Language of New Media (2001), Manovich provides an influential formal-

materialist account of new media.  He explains the development of new media in terms of 

the convergence of ‘two separate historical trajectories: computing and media 

technologies’ (Manovich, 2001: 20).  Both can trace their origins to the early part of the 

nineteenth century.  Babbage’s Analytical Engine provides the point of entry to the 

computing tradition, while Daguerre’s daguerreotype provides the initial scene for 

modern media (Manovich, 2001: 20).  The synthesis of these two traditions renders all 

media in the common form of computable data: 

The translation of all existing media into numerical data accessible through 

computers.  The result is new media – graphics, moving images, sounds, shapes, 

spaces, and texts that have become computable; that is, they comprise simply 

another set of computer data. (Manovich, 2001: 20) 

Drawing explicitly upon the discipline of computer science, Manovich (2001) 

defines new media in terms of a set of five logically-ordered principles.  The first and 

most fundamental principle is numerical representation.  Digital processes represent all 

media in binary numerical form.  This opens up the potential for algorithmic 

manipulation.  The second principle is modularity.  From the tiniest level (bits and 

bytes) to higher level structures, media elements have an independent status; they are not 

tied up in a continuous and fixed whole, but can be disassembled and are subject to many 

varied processes of recombination.  The third principle is automation.  The algorithmic 

character of crucial processes of new media ‘creation, manipulation and access’ 

(Manovich, 2001: 32) unsettles and partially removes the necessity for human agency and 

duplicates (simulates) many of the latter’s characteristic features (perception, 



   14

intelligence, memory).  The fourth principle is variability.  Due to their underlying 

numerical status and structural modularity, new media objects are not restricted to a 

single fixed, formal identity, but can take multiple forms and meet all kinds of specific 

contextual needs. Variability is vital to Manovich’s definition of new media:  

It becomes possible to separate the levels of ‘content’ (data) and interface.  

A number of different interfaces can be created from the same data.  A 

new media object can be defined as one or more interfaces to a multimedia 

database. (Manovich, 2001: 37) 

The fifth and final principle is transcoding.  Computer based structures and 

processes affect the ‘traditional cultural logic of media’ (Manovich, 2001: 46).  Manovich 

argues that ‘what can be called the computer’s ontology, epistemology, and pragmatics – 

influence the cultural layer of new media, its organization, its emerging genres, its 

contents’ (Manovich, 2001: 46). For this reason, Manovich suggests that: 

To understand the logic of new media, we need to turn to computer 

science.  It is there that we may expect to find the new terms, categories, 

and operations that characterize media that become programmable.  From 

media studies, we move to something that can be called ‘software studies’ 

– from ‘media theory’ to ‘software theory.’ (Manovich, 2001: 48) 

Gradually, then, through the process of describing the fundamental principles of new 

media, Manovich moves away from a traditional conception of media towards a 

conception of software.  This passage, this transition, is highly useful, but it is also 

unstable.  The relation between media and software (as a form of computation) slips 

uncertainly between historical confluence, base-superstructure determination, analogy 

and identity.  Manovich typically associates new media with a potential that takes shape 

on the basis of computation but that is not identical with computation itself.  He argues, 

for instance, that ‘[a] new media object can be defined as one or more interfaces to a 

multimedia database’ (Manovich, 2001: 37).  Here new media appears as the interface to 

computational forms and processes.  It is the visible and logical consequence of an 



   15

underlying work of variability rather than itself coextensive with this space of 

abstraction.  At another moment, however, he argues that ‘a new media object typically 

gives rise to many different versions’ (Manovich, 2001: 36).  In this instance the object 

itself partakes of variability and hence appears more closely linked to the possibility of 

software.  New media is cast ambivalently as both the experiential product of an anterior 

work of generative abstraction and as itself intimately engaged in variability. 

Although the overall structure of Manovich’s conception of new media suggests a 

notion of media reconceived and reshaped in terms of the model of computation, a sense 

of lingering distance remains.  For example, in relation to the principle of modularity, 

Manovich argues that structured programming serves as an analogue for the modularity 

of new media.  He suggests, however, that this analogy should not be taken literally: 

If a particular module of a computer program is deleted, the program will not run.  

In contrast, as with traditional media, deleting parts of a new media object does 

not render it meaningless. (Manovich, 2001: 31)  

Within this context new media appears distinct from software.  It is analogous to software 

but differs to the extent to which modularity is enforced. 

At one level, these strands of ambivalence can be regarded as a means of teasing 

out a theory of software from the strangeness of digital media.  However, at another level 

they can be regarded as a means of subsuming software under the conventional sign of 

visible, audible media.  From my perspective, the instability of his conception of new 

media highlights the instability of software itself, which encompasses dimensions both of 

abstraction and of experiential engagement.  Manovich makes a vital contribution 

towards elaborating a theory of software by describing what can be regarded either as 

another dimension of media or as the moment in which media transitions to something 

altogether different.  

Rejecting Software 

In a deliberate, playful provocation, German media theorist, Friedrich Kittler, 

recognizes software but subjects it to a strategic disavowal.  Adopting a strongly 



   16

technological determinist standpoint, Kittler argues that software constitutes an illusory 

means of human control over technological systems that have already usurped our human 

powers – that are no longer secondary tools but primary agents.  In a 1999 message to the 

nettime mailing list, Kittler argues: 

The billion-dollar business called software is nothing more than that which the 

wetware [human beings] makes out of hardware: a logical abstraction which, in 

theory – but only in theory – fundamentally disregards the time and space 

frameworks of machines in order to rule them. (Kittler, 1999)  

He regards software as a mystification – seeming to facilitate human creative-

instrumental agency over the realm of machines but actually only a secondary result of 

underlying relations that are determined at the hardware level.  Kittler deliberately 

reverses the humanist paradigm and embraces the ‘pure’ exteriority of the machine.  It is 

the lowest-level instrumental means that shape systems of functioning and 

communication, as well as the imaginative possibility of abstraction, goals and, 

ultimately, human subjectivity itself: 

When texts, images, and sounds are no longer considered the impulses of brilliant 

individuals but are seen as the output of historically specified writing, reading, 

and computing technologies, much will already have been gained. (Kittler, 1999) 

Kittler’s argument reveals an affinity with post-structuralist critiques of human 

subjectivity in terms of the motif of language.  The French philosopher Jacques Derrida’s 

(1976) insistence on the priority of writing (material, technical, secondary and exterior) 

over speech (abstract, human, primary and interior) provides a clear example.  However, 

if writing gains priority over speech within Derrida’s philosophical scheme, it is not in 

order to produce a simple reversal; rather, the priority of writing serves as a means of 

unsettling the thinking of priority itself and of the categorical differentiation between 

technical exterior and human interior.  It represents an effort to think ‘beyond’ or ‘across’ 

conventional categories.  Kittler’s reversal asserts the priority of the machine, but leaves 

the machine/human opposition intact.  His devaluation of software is significant.  Rather 



   17

than regard software as an indeterminate space of dialogue, he aligns it altogether with 

the human.  Only the machine itself – in its notional purity – is sufficient to represent the 

other of the human.  

Despite this tendency to allow the machine its utter inhumanity, Kittler’s reversal 

has considerable value as a means of countering the common tendency to regard the field 

of computation as simply a ‘tool’ that human agents master to realize their creative ideas.  

He suggests the need to consider how the dimension of the creative concept is shaped by 

the material and immaterial conditions of computation.  The problem, however, is that he 

reduces this relation to one of determination when something more subtle and complex is 

occurring, when it is a matter of the blurring and unsettling of boundaries.  Software is 

neither human nor inhuman but a curious terrain in which technical syntax and protocols 

become mingled with human cultural-imaginative concerns. 

Neglecting Software 

In New Philosophy for New Media (2004), Mark Hansen contrasts traditional media 

to digital media in terms of their differing modes of embodiment.  He argues that 

traditional (particularly cinematic) media separates the viewer from the objective 

character of the work (rendering the viewer immobile), whereas digital media makes the 

body the new medium for the work – the formal and material basis for the work’s 

concrete appearance.  Hansen draws upon Krauss’s notion of the ‘post-medium 

condition’ (Krauss, 1999: 32) to describe the aesthetic implications of digitization.  Just 

as contemporary ‘post-media’ art is aggregative and exceeds its technical support, so the 

digital image as a collection of ‘numerical fragments’ (Hansen, 2004: 35) represents an 

aggregate that lacks any necessary technical frame.  He argues that ‘[r]egardless of its 

current surface appearance, digital data is at heart polymorphous: lacking any inherent 

form or enframing’ (Hansen, 2004: 35).  No longer, in his view, constituted by an 

external material support (a traditional medium), the digital image gains provisional 

coherence through an embodied work of interactive perception.  In relation to 

Manovich’s definition of new media, Hansen emphasizes the features of numerical 

representation, modularity and variability in order to position the new media art work as a 

liquid phenomenon that only properly coheres as it is humanly experienced. 



   18

The problem for me here is the lack of recognition of intervening technical layers. 

Hansen fails to acknowledge that we never actually encounter strings of bits and bytes 

directly. Digital data is subject to many layers of abstraction and systematic organization 

prior to becoming ‘humanly’ accessible. The body (or notions of interactive perception) 

are certainly implicated in the work of engaging with the digital image (particularly in 

relation to game environments, virtual and augmented reality systems and the like), but 

this sense of embodiment is constituted via vital layers of software that mediate between 

data and experience, that represent and frame data to facilitate relations of embodied 

perception.  While acknowledging the abstract and variable nature of the underlying data 

structure, Hansen fails to adequately consider how this is articulated, choreographed and 

conceived to shape any specific possibility for embodied interaction.  In this manner, the 

crucial abstract-conceptual and material-discursive space of software is ignored. 

In their famous 1977 anticipation of contemporary forms of new media, ‘Personal 

Dynamic Media’, Allen Kay and Adele Goldberg (2003) describe computing as a 

‘metamedium’: 

Although digital computers were originally designed to do arithmetic 

computation, the ability to simulate the details of any descriptive model means 

that the computer, viewed as a medium, can be all other media if the embedding 

and viewing methods are sufficiently well provided. (Kay and Goldberg, 2003: 

393-4) 

The crucial insight here is not that the computer is polymorphous (a multimedia 

chameleon) but that it transcends the dimension of sensible, formal, medium-based 

identity.  A computer can simulate any media because it is defined by an order of 

abstraction, of flexible logical-systematic articulation.  It is defined, in other words, by 

the possibility of software.  The problem with Hansen’s conception of embodied 

interaction is that it ignores the underlying layers of organization that structure and 

facilitate the field of sensible appearance. 



   19

Hansen’s preference is for large-scale installation new media work in which the 

computer and processes of computation are largely hidden away out of view.  The 

emphasis is upon images, spaces and contexts of free kinaesthetic interaction rather than 

upon the mixed material and abstract space of coded instructions or the sensibly restricted 

space of conventional human-computer interaction (monitor, keyboard and mouse). 

Criticizing the conservative character of the conventional human computer interface 

(HCI), Hansen argues: 

The fact that the HCI extends the sway of immobility must be seen as an occasion 

for criticism of the cinematic heritage of new media, and beyond that, for 

exploration of unheeded or unprecedented alternatives. (Hansen, 2004: 35)  

Conventional screen-based software appears as a dull relic, inevitably compromised by 

its adherence to the (non) interactive conventions of cinema.  This represents a 

privileging of physical, sensible modes of engagement over abstract-symbolic and 

cognitive forms of interaction.  For example, in considering Paul Pfeiffer’s digital video 

work, The Long Count (2001) – a representation of a boxing match in which the boxer’s 

bodies are removed, leaving only cheering crowd, stretching ring ropes, etc. – Hansen 

argues that ‘it is the viewer’s body in itself (and no longer as an echo of the work’s 

“content”) that furnishes the site for the experience of the “work’s” self-differing medial 

condition’ (Hansen, 2004: 34).  Whereas another reading may have stressed the 

conceptual point of deliberately displaying an absence, of erasing the central point of 

interest while leaving in place its visible support and effects, Hansen focuses entirely on 

the embodied apperception of the work.  This devaluation of cognitive, semiotic modes 

of interaction explains his lack of interest in genres that are of central concern to my 

study, political net art and conceptually inclined software art. While his notion of new 

media embodiment may provide a refreshing antidote to the discourse of post-humanism, 

it obscures the underlying conditions of new media - its status not only as experiential 

field but as the trans-sensible space of software. 



   20

Acknowledging Software 

Cramer (2005) avoids the kind of polarized view of digital processes that is 

characteristic of Kittler and Hansen, and very explicitly makes a shift towards ‘software 

theory’ (Manovich, 2001: 48).  One of the central theoretical voices in the development 

of the contemporary notion of software art, Cramer conceives software as a mixed 

technical and cultural phenomenon in which contradictions are encompassed and 

conventional opposites intersect and coincide.  Against narrowly technical perspectives, 

he argues that software is a mode of cultural practice that includes algorithms, coded 

machine instructions, human interaction and a more general space of ‘speculative 

imagination’ (Cramer, 2005: 124).  Rather than restrict software (and the computational 

imaginary) to digital computation per se, Cramer sketches a much broader history that 

takes in traditions of religion, magic, mathematics, combinatory aesthetics and 

philosophy.  Some of these traditions are concerned with divine algorithms, others with 

natural ones.  Some conceive computation as an ecstatic practice, others as a rational, 

pragmatic one.  Some project the possibility of systematic unity, others disassemble and 

deconstruct.  Linking all of these tendencies together, in his view, is an underlying 

concern with negotiating a passage from the abstract to the material: 

Computation and its imaginary are rich with contradictions, and loaded with 

metaphysical and ontological speculation.  Underneath those contradictions and 

speculations lies an obsession with code that executes, the phantasm that words 

become flesh. (Cramer, 2005: 125) 

Cramer is explicit about the Biblical reference.  He quotes from the Gospel of John in the 

New Testament: ‘In the beginning was the Word […] And the Word was made flesh’ 

(Cramer, 2005: 14).  Whereas Kittler strictly limits this magical capacity to digital 

machine processes, arguing that ‘[t]here exists no word in any ordinary language which 

does what it says’ (Kittler, 1999), Cramer conceives the link between the domains of 

abstraction and materiality as just as significant in its speculative and imaginary aspect as 

in its material technical implementation.  In this respect, Cramer brackets the necessity 

that software be executed.  Apart from permitting him a much wider historical-cultural 

compass, this enables a notion of imaginary, desiring execution (software as ‘phantasm’ 



   21

(Cramer, 2005: 125)).  While this strategy opens the notion of software up to rich and 

diverse traditions of cultural practice and philosophical reflection, it also runs the risk of 

losing sight of the specificity of contemporary software practice.  For my purposes, 

software art involves a vital dialogue with the event-space of machine execution.  The 

intimate, dialectical relation between processes of abstraction and the field of execution, 

of defining algorithmic systems and then setting them to work or at play, is constitutive 

of my experience of programming software. 

Another minor reservation is that Cramer devotes more attention to magical and 

aesthetic conceptions of software than to rational instrumental ones.  Pythagorus, 

Kabbalah, Lull, and the Oulipo figure as key historical antecedents, whereas Aristotle, 

Boole, Babbage and Turing gain less attention or none at all.  This imbalance is 

prompted, no doubt, by Cramer’s central concern with elaborating a notion of software 

art, but it has the consequence, once again, of belittling the space of execution.  

Everything that shapes software as instrumental, as a work that is crucially concerned 

with issues of generic and actual functioning, becomes secondary.  In the process, the 

vital dialectic within software art between art and the ‘non-art’ realms of engineering and 

technical implementation slips into the thematic background. 

Conclusion 

In its capacity to take in both the technical space of algorithms and the human space 

of interface and interaction, the notion of software is difficult to pin down to any 

particular mode of material or conceptual being.  Cramer offers a cultural conception of 

software that encompasses algorithmic technical functioning, dimensions of human 

meaning and use, and a wider context of philosophical, speculative imagination.  More 

specifically, he links software to a self-conscious work of algorithmic invention and 

interaction.  He is far less concerned with software as a ‘transparent’ vehicle for human 

instrumental or creative intention than as a terrain of reflective engagement with aspects 

of algorithmic system and process.  Whereas Kittler associates software with a dimension 

of illusory (non-technical) human agency and control, Cramer associates it with a critical 

engagement with typically hidden dimensions of technical process.  It is within this 

context that the notion of ‘software art’ provides a means of highlighting a realm of 



   22

creative practice that is all too often obscured by the conventional emphasis on the front-

end of ‘new media’ (Cramer and Gabriel, 2001).  Whether, however, this suggests an 

essential opposition between media and software remains debatable.  In my view, the 

opposition is more between a traditional school of new media that is largely focused on 

large scale strategies of technologically enabled immersion (work associated with artists 

such as Jeffrey Shaw and Char Davies) and another that is deliberately low-tech, more 

politically engaged and conceptual in orientation (the work of the British Net art 

collective, Mongrel, for example).  The former places the emphasis on the visible 

interface and aspects of experiential engagement, while the latter represents an 

exploration and critical interrogation of underlying technical systems. 

Clearly, however, the notion of media extends beyond this narrowly sensible 

conception.  The thinking of media - from Aristotle’s (1965) notion of plot as the abstract 

basis for the medium of drama, to Sergei Eisenstein’s (1986) conception of the dialectical 

nature of film montage, and to Geoffrey Batchen’s (2006) analysis of binary relations 

within photography and telegraphy  - has consistently questioned the view that media is a 

simply sensible phenomenon.  In these terms, software may be regarded as form of media 

that makes explicit dimensions of abstract construction that have always been implicit 

within media.  Of course, the issue of the relation between media and software is more 

complex than this - involving also, for instance, the notional gap between a representation 

and a general model, and between a passive ‘impression’ and an active functional process 

- but these are not issues that I can pursue adequately here.  I can only suggest that the 

relation between media and software deserves more thorough examination and that it may 

well be possible to conceive software as a form of media rather than as something 

altogether separate.  If the notion of media, at the very outset, depends upon conceiving a 

gap between experience and representation and is centrally concerned, since at least the 

advent of photography, with the role of automatic mechanism in the work of constructing 

an ‘impression’, then software can be regarded less as an antithetical phenomenon than as 

an accentuation of these insensible and inhumanly enabled tendencies; as the 

manifestation of a play of abstraction and division that will have always been vital to the 

nature of media. 



   23

Overall, the value of the term ‘software’ hinges less on its rigorous conceptual 

specificity than on its ambiguity and connotative richness.  Although software can appear 

opposed to hardware (and media) in the same way that the mind is opposed to the body 

and the abstract is opposed to the material, from another perspective software holds this 

distinction within itself.  It is not simply ‘soft’, it is also a ‘ware’ – a hammered, battered, 

commercial-manufactured thing.  Software suggests a mixed conceptual, cultural, 

economic-industrial and technological space. 



   24



   25

Chapter 3 
________________________________________________________________________ 

Code 

 

Introduction 

In the previous chapter I examined the general notion of software, stressing its vital 

ambiguity – its capacity to engage both human and machine dimensions of computational 

process.  In this chapter I consider the specific field of high-level language programming.  

This is the field in which I produce my own software art work.  It is constituted precisely 

as a space of intimate communication between human and machine processes and its key 

formal discursive features of abstraction, disguise and instrumental operation will prove 

vital to my questioning of the conventional conception of software art in subsequent 

chapters.  I begin by reviewing these features, with a particular emphasis on examining 

the principles that inform the structure of contemporary object-oriented programming, 

and then go on to consider programming as a specific mode of making.  If code 

represents an abstraction of industrial forms of production, then it also passes beyond the 

model of the assembly line, opening up a mode of practice that encompasses 

contradictions – appearing at once both precise and logical, and experimental and 

‘speculative’ (Fuller, 2003: 29). 

Abstraction 

Abstraction is fundamental to all forms of programming.  Programming involves 

abstracting states, processes and systems so that they can be represented in logical, 

symbolic terms.  It is a form of model-making in which every component is ultimately 

decomposable into discrete binary states and logical operations.  Abstraction not only 

affects how problems are represented, it also shapes the structure of programming itself.  

High-level language programming represents an abstraction of low-level computing 

processes.  Instead of wrestling with bits and bytes, memory registers and the like, the 

high-level language programmer tends to deal with pre-defined data types that represent, 

for instance, numbers, whole words or images, and with sophisticated algorithmic 

functions that serve as abstracted ‘wrappers’ to more fundamental logical procedures.  



   26

Relations of programmatic abstraction are characteristic of every dimension of computer 

processes. 

Data and Algorithms 

Programming is based on step by step procedures, algorithms.  Algorithms can be 

regarded as sets of instructions that manipulate data.  Data represents the dimension of 

content, while algorithms represent the dimension of process.  There is nothing, however, 

at the lower level that materially or symbolically separates them.  Following Turing’s 

model of the universal machine, they are both represented in memory as strings of 1s and 

0s.  High-level programmers, as I have suggested in the previous chapter, rarely deal with 

binary data directly.  In fact they rarely even deal with data directly.  On the whole they 

represent data as variables.  The following variable ‘a’ is set to contain the integer value, 

49. 

  
Fig. 1: The notion of a variable 

Variables may contain data or they may simply refer to memory addresses where 

data is stored.  Algorithms typically manipulate data through long chains of variable-

based mediation.  Great care is taken to ensure that algorithmic processes themselves are 

unaffected by any reference to actual data.  Algorithms are conceived as generic 

machines.  They abstract some specific dimension of functionality.  They process data 

but do not allow the particularity of any specific data to structure their operations.  The 

following diagram of a percentage calculating algorithm (function) indicates that specific 

values pass through the algorithm and specific output values emerge, but that the internal 

procedures of the algorithm are generic. 



   27

 
Fig. 2: The notion of a generic function 

It is not always possible to produce fully generic code, but typically the more generic an 

algorithm the better its functioning has been abstracted and properly understood. 

Variables are not restricted to holding single values.  They can often refer to more 

complex sets of data – arrays of values, for instance, that represent a collection of 

potential states.  The spatial structure of a chessboard can be represented, for example, in 

terms of an array of 64 values, one for each square on the board.  The array is an abstract 

conception that bears no necessary relation to perceptible grid-like space, but the values it 

contains can be interpreted mathematically in terms of logical spatial relations.  

Numerical positions in the array can be calculated as references to specific row and 

column positions.  I remember how powerfully this recognition of the potential to 

represent dimensions of perception in an imperceptible logical format affected me when I 

first learnt about it.  The gap between underlying data structure and interface suggested 

all kinds of creative possibilities.  For me, it was not simply a matter of recognizing a 

work of logical abstraction, it was about the capacity to regard the visible interface as an 

apparition – a guise – floating above the protean, re-combinatory potential of arrays of 

data.  Overall then a programmer defines not only generic algorithmic procedures but 

also data structures that represent specific logically defined universes of manipulable 

elements. 

Program Structure 

Line by line, programming inevitably involves processes of calculation, but there is 

more to programming than just the discrete manipulation of data.  Larger structures are 



   28

employed to choreograph program flow.  The two fundamental forms are iteration and 

conditional branching.  For example, a ‘for-loop’ is an iterative form that repeats some 

process a specific number of times, while an ‘if-statement’ is a conditional form that 

selects an appropriate process depending upon specific conditions.  These are formulaic 

compositional features that shape the overall running of programs. 

Beyond these syntactical features there are larger dimensions of program structure.  

A typical program, say a simple game, functions in the following manner.  The program 

begins with an initialization phase in which technical display and interaction contexts are 

established and fundamental data structures are constructed and assigned relevant values 

(involving, perhaps, the loading of relevant game resources).  The program then proceeds 

to the phase of core game operation.  This is typically represented as a ‘main loop’, which 

involves rapidly repeating the following steps: 

• Checking for user input 

• Updating relevant data structures 

• Updating aspects of game display 

The main-loop is a macro-level construct that coordinates the overall running of the 

game.  Each of its steps is likely to involve numerous sub-steps.  Programs are structured 

as hierarchical systems of algorithmic process.  There are typically loops within loops 

within loops. 

At the end of the game the program passes into a shut down phase, exiting the main 

loop, disposing of data structures and returning the display context to the background 

operating system. 

At one level programs have a linear aspect.  They begin, do something and end.  

Yet at another level, in their looping, modular and interactive aspect they can be regarded 

as non-linear.  From this perspective, beginning, running and exiting represent less a 

linear trajectory than a set of discrete states.  A program can be conceived as a system of 



   29

interacting components rather than as a fixed sequential thing.  This is the perspective 

that contemporary object-oriented programming adopts.  

Object-Oriented Programming  

My first programming efforts in the early 1980s were with the Basic language for 

the Commodore 64.  Basic employs a very sequential, imperative style.  All the code for 

a program is written in one unbroken text file.  Every line is numbered and the code 

proceeds from the first line through to the last unless some control structure intervenes to 

point the processor elsewhere.  For all sorts of good reasons, this process of jumping 

around and cycling here and there is often necessary. 

 
Fig. 3: ‘Spaghetti’ code 

This mode of organization clearly echoes the structure of a basic Turing machine – it 

jumps discretely back and forth on a strip of tape.  While this is fine for shorter programs 

it quickly becomes a nightmare for longer ones.  The continuous strip of tape is simply 

not a good metaphor for complex non-linear processes. 

The problem of so-called ‘spaghetti’ code was addressed by the next generation of 

code that established a non-linear and analytical organizational model.  The monolithic 

continuous slab of code disappears, to be replaced by a more lightweight main loop that 

communicates with data and algorithms as necessary.  This structure is often called 



   30

‘structured’ or ‘procedural’ programming because the emphasis is upon creating generic 

algorithms that link to specific data structures. 

 
Fig. 4: Structured programming 

Like linear imperative programming, procedural programming tends to work best 

with small programs.  Large programs can lose structure and coherence, establishing a 

huge global pool of data and a large, undifferentiated mass of functional algorithms.  The 

newer paradigm of object-oriented programming (see, for example, Horstmann and 

Cornell, 2005) arguably provides a more elegant and sophisticated means of developing 

clear, easily maintained and re-useable code.  Object-oriented programming works to 

model an overall system of functional components rather than simply the passage of data 

through algorithms.  It describes classes of entity that have both attributes and capacities.  

In programming a racing car game, for instance, there is likely to be the need for a class 

that represents the relevant characteristics of a racing car.  It may have attributes such as 

make, colour and maximum speed, as well as capacities such as starting, turning and 

braking.  The essential characteristics of this notional car then combine dimensions of 

both data (attributes) and algorithms (capacities).  Instead of separating these dimensions, 

object-oriented programming combines them into a single logical entity.  The 

programmer writes blueprints for potential objects.  The focus shifts from describing data 

and abstracted generic functionality towards envisaging systems of objects that 

communicate.  It is not that the concern with generic algorithms or data structures 

disappears.  It is that they are encompassed within another level of abstraction. 

Four principles guide the conception of object-oriented programming: 



   31

1. Abstraction 

2. Encapsulation 

3. Inheritance 

4. Polymorphism 

In the case of object-oriented programming, the principle of abstraction involves 

defining the essential characteristics of any specific problem in terms of logically distinct 

and communicating classes of modular functionality.  The curious thing about this is how 

a concern with system can be linked to a mechanistic notion of discrete objects.  Just as 

emerging modes of virtual interaction suspend our allegiance to the solidity of the real, 

and contemporary science and philosophy question the possibility of entirely discrete 

things (stressing instead relational identity), we suddenly discover, precisely within the 

texture of the virtual, a new realm of discernible objects.  Object-oriented programmers 

work to define the essential characteristics of a ‘thing’ precisely as ‘thing-hood’ itself 

becomes problematic. 

The principle of encapsulation is related to that of abstraction.  To abstract is to 

represent in other terms.  This involves not only a motion of manifestation but also a 

motion of hiding.  Whatever it is that is abstracted disappears from view.  The complexity 

of modern computer systems depends upon the construction of modular ‘black-boxes’ 

that can be pieced together as necessary into functional systems.  We are not encouraged 

to look inside these boxes and are certainly not meant to tinker with their internal states 

and procedures.  Encapsulation refers then to this deliberate work of hiding in which we 

engage with objects as abstracted functional entities and are not permitted to delve into 

the internal details of how they function.  The same principle enables us to drive a car 

without requiring any thorough mechanical understanding of how it works. We engage 

with the mediating abstraction of the steering wheel rather than the messy complexity of 

contemporary steering technologies. 

Object-oriented programming languages such as Java enforce strict protocols of 

encapsulation.  The internal state of an object should only be accessible through 



   32

designated ‘public’ procedures.  The latter constitute an interface to the object’s internal 

‘private’ attributes (fields) and algorithms (methods).  Apart from protecting data from 

inappropriate modification, encapsulation makes code modular.  Classes can be written, 

tested and maintained in isolation from the functioning of the program as a whole.  

The principle of inheritance refers to the capacity for classes to inherit the 

characteristics of other classes.  The programmer defines general classes that provide the 

basis for more specialized classes.  An abstractly defined ‘moving object’ class may then 

be extended to create a ‘car’ or a ‘plane’ or a ‘spaceship’ class.  The various inherited 

classes take on the attributes and algorithms of the base class and can add their own 

additional features as necessary.  An interesting consequence of inheritance is that it 

enables a class to encapsulate dimensions of its own identity and functionality – to 

become abstracted, as it were, from aspects of itself. 

If inheritance enables logical-hierarchical and encapsulated differentiation, the final 

principle of polymorphism provides a means of managing multiplicity.  Although cars, 

planes and objects are all different things (with their own independent class descriptions) 

they can still all be accessed as ‘moving objects’.  They share a common interface yet can 

still process differentiated input and produce appropriately differentiated results.  

Polymorphism serves to mediate complexity through a vital dimension of structured 

commonality. 

It is interesting to note the variety of metaphors that inform the conception of 

object-oriented programming, drawing, for example, on engineering (the notion of an 

object as ‘black-box’ machine), politics (encapsulation as means of securing the 

boundaries between public and private) and biology (the notion of inheritance and of 

morphology).  The concept of class interestingly relates across all three of these 

conceptual domains (blueprint, social class, biological class), although its main derivation 

is from mathematics (set theory).  This multiple set of references seems pertinent to the 

expanded space of possibility that object-oriented programming engenders.  Despite its 

atomic view of real world things and processes, it enables a modular, mutable, 

decentralized approach to issues of structure that has all kinds of creative implications. 



   33

The emphasis it places on the interaction of objects – on the elucidation of a system – 

suggests a very different field than that described by linear forms of media. 

With this overall description of the formal features of high-level programming in 

place, we can now move on to consider programming as a mode of creative practice. 

Code Practice 

Programming is a form of writing.  The programmer writes text files.  However 

these files are not primarily intended for human reading, but for machine-reading.  Unlike 

natural language that can cope with huge elements of ambiguity (meaning emerging 

through a complex process of human negotiation and inference) the artificial languages of 

computer programming demand an absolute semantic and syntactical precision.  A single 

misplaced semi-colon or wrongly positioned space is enough to make the machine reader 

suspend its operations or collapse (crash).  This horizon of unconscious reading, of 

execution – the necessity that code run, that it pass from text-based instructions into 

logically legible sequences of byte-code – vitally affects the nature of code practice.  The 

programmer moves tenuously between two planes of visibility – the plane of written code 

and the plane of output (the sensible interface) – while the middle space, the space of 

code running occurs invisibly, as an elsewhere.  As one monitors and observes the 

consequences of the specific play of calculations, there is both an intimate sense of 

engagement with code processes and an equally compelling sense of distance – of 

separation, of mediation. 

How is this curious realm of writing – involving the passage between the human 

and the mechanical, the material and the abstract and the hidden and the manifest – to be 

conceived?  As Cramer (2005) suggests in relation to the multiple, often contradictory, 

conceptions of the culture of software, there is a need less to elaborate a single coherent 

view than to acknowledge a diversity of perspectives.  Programming has been variously 

conceived as an abstraction of the factory assembly line and as a speculative activity that 

bears a relation to painting and literature, as a dull motion of technical implementation 

and as an experimental, questioning practice, as a form of solipsism and as a medium of 

social collaboration.  My aim in the remainder of this chapter is to explore some of these 



   34

competing, often opposed, perspectives.  I should note that while Cramer adopts a very 

inclusive notion of software that includes not only executable code but also non-

executable code, reflections on code and a more general context of speculative 

imagination, my interest is more specifically in modes of programming practice – with 

programming conceived as a form of writing that necessarily charts a relation to machine 

execution, that summons, and disappears within, a space of running. 

Restriction and Freedom 

At one level programming is a highly circumscribed activity.  It is bound by precise 

syntactical and semantic rules, employs formulaic modes of expression and tends at the 

macro-level to follow recognizable ‘design patterns’ (Gamma et al, 1995).  At another 

level, however, there is a tremendous freedom to fashion systems in whatever way one 

wishes.  For example, within the context of games programming, the entire logic of game 

time, space and interaction can be determined from scratch.  The programmer creates less 

a specific game than a generic engine for game play.  Rather than focusing on the details 

of specific characters and game events, the game programmer shapes the underlying logic 

of display and interaction that makes them possible.  In the most general terms, 

programming is oriented to establishing system-level structures, processes and 

conditions.  In terms of its specific creative character then, programming enables a free, 

playful engagement with the speculative character of abstraction.  The programmer 

discovers within the alienation of a rarefied, mathematically abstract and highly restricted 

language the capacity to shape the formal conditions for any kind of emergent 

complexity. 

This indicates that in evaluating software art, there is a need to consider not only 

what the code engine produces but also the imaginative system-logic that informs its 

motion and output.  The play of the former provides the means for making sense of and 

appreciating the latter.  This need not entail directly revealing the code.  Structure and 

rules can be inferred on the basis of the code’s sensible machinations.  It is worth noting, 

however, that software art is not reducible to a logical puzzle.  It demands a richer 

response than simply inferring abstract conditions.  Code-base systems can also have a 

poetic force.  They can, for instance, find procedurally rigorous means of expressing the 



   35

limits of their own logic.  It is very often in the tension between precise, technically 

functioning system and the strangeness of data and manifestation that software art 

discovers its aesthetic potential.  This is certainly the case in my own work.  For instance, 

Halfeti – Only Fish Shall Visit is as much about the limits of spatial documentation as it 

is about carefully evoking a specific place and time.  The generic, logically-geared 

navigational engine becomes a means of exposing absences, gaps and intervals, as well as 

opening up a revelatory relation to the banal.   

Mastery and Servitude 

We have seen that programming involves not only writing but also an intimate 

concern with a space of execution.  At one level this relation appears one of mastery and 

servitude.  The programmer, as human and intellectual master, prepares the instructions 

that the code apparatus slavishly executes.  Yet the relations of mastery and servitude are 

more complex and less easily determinable than this.  Firstly, from a broader contextual 

viewpoint, if the human programmer appears provisionally as master in relation to code 

processes, they are typically positioned as a mere functionary in relation to broader 

divisions of human creative labour, and if the code layer appears provisionally servile, it 

also adopts the role of master within bit-level electronic operations.  We find then not a 

single hierarchical relationship – in which the spoils of mastery can be simply obtained 

and enjoyed - but multiple hierarchies, all shaped by instrumental demands.  Secondly, 

the notions of mastery of servitude tend to misrepresent the actual character of the 

relation between code writing and code execution.  The relation is so close within 

programming that it is less a matter of domination than of mutual imbrication.  The 

programmer must find the means to think within the contours of code’s laborious 

operations – the unreflective maze of its decision space.  In order to appear as master the 

programmer must have the capacity to think like a servant – to participate logically and 

imaginatively in code’s blind labour. 

Mediation in Reverse 

Immanuel Kant’s 1790 Critique of Judgment (Kant, 1980) provides a classic 

description of the nature and role of aesthetics.  According to Kant, aesthetics works to 



   36

mediate a relation between the abstract, a priori space of pure reason and the realm of 

sensible experience (Kant, 1980: 493).  Aesthetics represents a moment of rationality that 

is pre-conceptual, that is constituted both as an intuitive recognition of a dimension of 

abstract order within the phenomenal (the notion of the beautiful) and as a sense of awe 

and wonder before vast, chaotic sensible prospects that serve to echo and metaphorically 

manifest the protean, infinite horizons of the a priori (the notion of the sublime).  

Experimental artistic programming practice, however, works differently – almost in 

reverse.  It represents an aesthetic engagement with abstraction and with the trans-

sensible space of computation.  The latter appears as the mechanization and 

exteriorization of pure reason; regarded no longer as an immediately accessible human 

resource but as a space of otherness that must be summoned through code.  Programming 

represents the effort to humanly, sensibly, engage with the terrain of the insensible; but in 

new terms – in terms that pass beyond whatever the human and the sensible 

conventionally mean.  Code and the labour of coding appear as a flesh-like interface to an 

intractable space of abstraction. 

The French philosopher Henri Bergson (1911) is famously critical of film for the 

manner in which it represents time. Film, he argues, decomposes time.  It breaks it up 

into discrete instants and then attempts to reassemble continuous time from sequences of 

successive still images (Bergson, 1911: 306).  This is to neglect the fundamental 

character of time – its intrinsic continuity, its duration.  If film is problematic, then how 

much more so are binary, digital processes?  The time of computation is sublimely 

opaque.  It is not composed of perceptible instants, but of machine cycles that exceed 

human resolution.  The speed of a standard repeat loop, even if it involves thousands of 

iterations, typically occurs so quickly that it cannot be registered as a temporal process; it 

appears instantaneous.  Similar points can be made about computational space.  We know 

that computer memory is ultimately physical but the combination of immense magnitude 

and microscopic scale makes it humanly inaccessible.  But by actually practically 

engaging with this space, by allocating arrays of data, rapidly searching though them and 

destroying them, the practice of programming provides some kind of purchase on this 



   37

terrain of abstraction.  It provides a close, flickering sense of the inhuman otherness of 

computational processes. 

Magic and Manufacturing 

Cramer relates programming to the casting of spells – the magical potential to 

affect the material world through the agency of arcane procedural utterances (Cramer, 

2005: 14).  The Australian new media theorist Chris Chesher (2001) examines how the 

metaphor of ‘invocation’ informs notions of programming.  He demonstrates that the 

relation of the programmer to the operating system and the abstract space of computer 

memory is conceived as a magical calling forth of spirits.  Programming is described as a 

form of conjuring and as a means of accessing secret powers.  As an example, a textbook 

by the artist Peter Small on the Lingo scripting language is titled Lingo Sorcery: The 

Magic of Lists, Objects and Intelligent Agents (1996). Small introduces the field of 

object-oriented programming in the following hyperbolic terms: 

This book goes beyond syntax, into a conceptual world, where Lingo is used to 

construct strange interacting forms and structures in the mind as well as within the 

memory of the computer.  It is a world which has to be discovered, not learned. 

(Small, 1996: 1) 

Object-oriented programming appears as a mystical realm of understanding and the 

reader is positioned as an initiate into a dark art.  

While the metaphor of magic is very evident within programming and suggests the 

fascination of a medium that links language to visible and invisible aspects of process, it 

is, for me, always qualified by an equally clear sense of programming as a logical, skilful 

practice of making.  Programming is as much a work of manufacturing as of casting 

spells.  I am very interested in this notion of programming as a work of rational, analytic 

construction, centrally concerned with issues of efficiency and running.  The issue of how 

such a conception can correspond to a notion of critical art is one that I return to in later 

chapters.  Very briefly, my aim there will be to examine the complex relation between 

critical questioning and building in software art, suggesting the potential for questioning 



   38

to take the form of making and making the form of questioning within strands of 

experimental code practice. 

General and Particular 

In their classic 1947 critique of 20th century mass culture, ‘The Culture Industry: 

Enlightenment as Mass Deception’, Theodore Adorno and Max Horkheimer argue that 

culture has become thoroughly affected by capitalism.  All culture now adopts the form 

of products to be consumed and obeys rules of standardization that take archetypal shape 

in the factory assembly line.  Any appearance of difference is entirely superficial and 

illusory.  There is a gesture of ‘pseudo-individuation’ that works only to disguise the 

genuine logic of uniform cultural identity: ‘[w]hat is individual is the generality’s power 

to stage the accidental detail so that it is accepted as such’ (Adorno & Horkheimer, 1982: 

374).  How does this critique affect our understanding of programming practice, 

specifically in terms of how the relation between the general and the particular is 

conceived within object-oriented programming?  Object-oriented programming makes a 

fundamental distinction between classes and objects.  A class is a general abstraction (a 

blue print) while an object is a particular thing (an instance of a class in memory).  But 

how genuine is this dimension of particularity?  Although a spaceship class may breed all 

manner of particular spaceship objects which vary in terms of specific designated 

parameters (length, colour speed, etc.), can this constitute anything more than a merely 

cosmetic level of difference?  Does this abstractly determined particularity represent the 

very essence of the domination of the particular by the general? 

These are precisely the questions that confront creative artificial life projects as 

they struggle to fashion emergent effects within the finitude of digital agar.  In my view it 

is less an issue of insisting upon the generation of utterly unpredictable phenomena than 

of recognizing an overall orientation towards differentiation rather than uniformity.  

Object-oriented programming works at multiple layers to structure individuation in terms 

of the interaction of abstractly defined constitutive elements and rules.  The potential for 

differentiated complexity is facilitated by object-oriented processes.  The field of 

generative artificial life envisages classes as evolutionary templates – DNA style 

genotypes for ‘breeding’ particularized phenotypes (Whitelaw, 2004).  Within the field of 



   39

Genetic Algorithms even abstract classes themselves can be evolved.  Artificial life 

conceives programming not in terms of the monotony of the assembly line but in terms of 

the rich variety of organic life.  Overall, then, differentiation is less an external effect 

within object-oriented programming than an integral structural feature.  This is clearly 

linked to the conceptual shift that object-oriented programming represents from a linear 

and centralized notion of process – to a systemic and distributed one. 

Solipsism and Sociality 

As a venerable convention, the first exercise in a programming textbook involves 

writing ‘Hello World!’ to the console output.  This exercise has always raised questions 

for me.  Who is speaking?   Who is this greeting directed towards?  Is it the thinking 

machine adopting a human guise and making a comic overture to a space of exteriority – 

the world – that can never be its proper focus of concern?  Or is it a completely uncertain 

gesture of communication from the programmer to a world that can only be accessed 

through an endless chain of mediation?  Is there an irony in the tenuousness of this 

greeting and its obvious solipsism, or could it also express a utopian hope for social 

interaction?  Programming represents at one level a withdrawal from the world into a 

closed cycle of cybernetic exchange in which the risk of human communication is 

replaced by the consoling rhythm of instructions and feedback, and in which human 

control and agency can only ever be contradictorily affirmed (as a work of both 

constructing and being enframed within a technological apparatus).  At another level, 

however, it represents a new avenue of social speech and engagement.  It is both of these 

possibilities at once.  This is very evident within the culture of hacking, which involves 

both a relentless concern with the arcane, technical details of computation and a 

determined effort to establish and participate in collaborative social networks. 

The culture of hacking grew up in the late 1950s as large mainframe computers 

became accessible to graduate students in universities and the like.  It received further 

impetus with the growth of the UNIX operating system, personal and networked 

computing, and the web.  Richard Stallman is the archetypal hacker (Stallman, n.d.; 

Levy, 1984).  A crucial contributor to the GNU/Linux project and an old-school 1960s 

radical, Stallman is the founder of the Free Software Foundation (Free Software 



   40

Foundation, n.d.).  He regards the practice of coding not as a work of commercial 

manufacturing but as a fundamentally political act.  It is both an expression of freedom 

and a practical means towards it.  Here a vital conceptual link is evident to the linguistic 

status of code.  Code is a form of speech.  The Free Software Foundation argues: 

Free software is a matter of liberty, not price.  To understand the concept, you 

should think of “free” as in “free speech”, not as in “free beer”. (Free Software 

Foundation, n.d.) 

However silent, however much it is spoken into the ears of a machine – code and the 

practice of programming somehow makes a return to the promise of the social.  It is a 

paradoxical manifestation of the social. 

Competing Methodologies 

Traditional approaches to software engineering – so called ‘waterfall’ methods – 

represent the practice of software development as a predictable, linear process.  Software 

development is conceived as a large-scale, long-term endeavour that is structured in 

terms of a fundamental division between processes of design and implementation.  An 

initial stage involves producing user case scenarios and analyses to define the specific 

software requirements.  This is followed by an exhaustive software design process in 

which every facet of the proposed software system is described.  In relation to the 

technical system, thorough visual models of the object-oriented design are developed, 

with all attributes and capacities of individual classes indicated, as well as the complex 

system of inter-class relations.  Only after everything has been determined in advance and 

meticulously documented does any actual programming begin.  As a result the practice of 

programming is reduced to a work of technical implementation.  The model of 

predictable industrial engineering banishes any sense of experimental design practice 

from software programming.  It also relegates the texture of code, as writing, secondary 

and insignificant.  Software development is regarded less as a textual process than as a 

conceptual one; the fully designed concept precedes the text and dominates it. 



   41

More recently, in 1996, an alternative paradigm has emerged, termed ‘agile’ 

software development (Agile Alliance, n.d.).  This methodology rejects the model of 

large-scale modernist industrial engineering, preferring an approach in which software 

development proceeds in much shorter, socially collaborative and textually implicated 

development cycles.  If software engineering adopts a linear and strictly hierarchical 

approach, agile practices follow a looping, modular pattern that mirrors the conception of 

object-oriented programming.  Crucially, design becomes a part of programming rather 

than appearing as an altogether anterior space of determination.  A problem – a 

possibility – is conceived, then it is swiftly clarified and bits of pieces of the problem are 

tackled.  Software prototypes are produced which suggest further design issues and the 

need for further prototypes.  Gradually, in an organic and iterative fashion, an overall 

piece of working software is developed. 

Agile methodologies draw inspiration from the model of free and open-source 

software development.  The GNU/Linux operating system was produced entirely as a 

community-based collaborative project.  The complex cultural and technical assemblage 

of GNU/Linux emerged without any reference to a design blueprint.  Indeed the 

phenomenon is simply too complex to be susceptible to exhaustive preliminary 

description.  One of the major problems with the waterfall software engineering approach 

is that it attempts to manage complexity by stepping outside of it – by denying its real 

force.  In the process the method tends to endlessly stumble across things that it had not 

adequately anticipated.  Agile development methodologies suggest that only by moving 

design within software, within the complexity of programmatic textual relations, is a 

more coherent and pragmatic process of software development possible. 

Despite their differences, both waterfall and agile software development 

methodologies represent programming as a form of engineering.  They maintain an 

allegiance to logical, procedurally rigorous processes of construction.  Hacking, however, 

is less immediately responsible and task-oriented.  It begins with the wayward practice of 

tinkering, of messing about with bits of code.  It is playful at the outset rather than 

directed.  In his introduction to programming the Arduino microcontroller, Massimo 



   42

Banzi describes an alternative embedded programming philosophy that is clearly based 

on the culture of hacking: 

The classic engineering approach relies on a strict process for getting from A to B 

while the Arduino way is based on maybe getting lost in the way and finding C 

instead; playing with the medium in an open-ended way, finding the unexpected. 

(Banzi, 2006: 7) 

This methodology clearly also bears a relation to aspects of traditional aesthetic practice.  

In his article ‘Hackers and Painters’, the programmer Paul Graham rejects the classical 

engineering paradigm and searches for analogues from the creative arts to describe 

programming practice: 

[T]here was a name for what I was doing: sketching. As far as I can tell, the way 

they taught me to program in college was all wrong. You should figure out 

programs as you're writing them, just as writers and painters and architects do. 

(Graham, 2003) 

This exploratory and open-ended approach has considerable currency within 

contemporary software art (see Malina (1979), Reichardt (1971) and Druckrey (1999) for 

earlier precedents within 1960s and 1970s art and technology experimental practice).  

Ben Fry’s and Casey Reas’s experimental digital arts programming environment, 

Processing (Fry and Reas, 2001, continuing), deliberately encourages an exploratory 

approach.  It is concerned not with the creation of finished, fully elaborated pieces of 

useful software but with playing with dimensions of structure and process.  Programming 

projects are called ‘sketches’ and are conceived as mixed technical and conceptual-

aesthetic entities.  In my view, however, there is a need for some qualification.  It is not a 

matter of reaffirming the conventional opposition between the instrumental and the 

aesthetic.  Rather, alternative programming practice has the potential to suggest 

something more radical: a rethinking of the instrumental from within its own formal 

devices.  Although it resists the culture of pragmatic software, software art nonetheless 

intervenes in its language and speaks its language, even when it casts its work in negative 



   43

terms, even when it envisages its work solely as one of corruption.  This is evident in a 

manifesto of the New York based group, 8-bit Collective (or Beige programming 

ensemble): 

Our primary foundation of Post Data is then this: the conscious 

corruption of data, the releasing of bits from their imprisonment within 

the restrictive, limiting boundaries of corporate software applications, 

and the exploitation of the extreme complexity of computer systems paired 

with the extreme intentionality of artist(s) who seek to engage the 

computing process at a fundamental level. It is at this point that the 

machine ‘speaks’ to us, revealing a more honest representation of the 

technological extremity. (Beige, 2001) 

8-bit collective set out both to corrupt data and to engage ‘the computing process at a 

fundamental level.’ How is the latter possible without speaking the language of the 

computation, without adhering to the forms of abstraction and functioning that provide 

the basis for everything they set out to resist?  In my view, experimental software art 

opens up a context in which the languages of critique and instrumental-making enter into 

a new relation that affects the nature of both.  This is an issue that I pursue more 

thoroughly in Chapter 6. 

Conclusion 

This chapter has considered the formal characteristics of high-level programming 

and discussed the complex and often contradictory ways in which programming is 

conceived as a mode of practice.  The aim has been to provide a basis for a more specific 

consideration of the genre of software art in the following chapter.  Software art is 

centrally concerned with reflecting upon its status as code – with envisaging a critical 

meditation on code that is conducted through the mechanisms of code.  What does this 

mean and how is it enabled?  What are the specific issues and tensions that arise in 

attempting to position software as critical and reflective?  How does this relate to 

programming as a practice of speculative manufacturing?  



   44



   45

Chapter 4 
________________________________________________________________________ 

Software Art 

 
Introduction 

While aesthetic experimentation with programming has been evident since the 

1960s, it has tended to slip into the background – to be regarded as simply one, among 

many, ways of producing new media.  The emphasis, as we have seen, has been on the 

sensible work rather than the underlying code that structures the possibility of any 

specific digital interface (Cramer and Gabriel, 2001).  The question of the aesthetic status 

of this mixed space of writing and abstraction has never been quite so directly posed until 

the advent of contemporary software art.  This chapter examines the genre of software 

art, considering how it has been conceived, the historical forces that have shaped it and 

the specific dilemmas that confront it.  I begin by sketching a general context of aesthetic 

engagement with the field of programming. 

Exclusion 

The early history of computer art is typically described in terms of a rapid rise and 

an equally rapid fall.  The British theorist Charlie Gere (2002:102-109) describes how the 

late 1960s avant-garde fascination with the aesthetic possibilities of the computer lasted 

only till the beginning of the 1970s when Conceptual Art grew suspicious, rejecting it as 

politically and aesthetically naïve.  After the flurry of excitement and disappointment that 

surrounded Billy Kluver’s ‘Experiments in Art and Technology’ (EAT), the 1968 London 

‘Cybernetic Serendipity’ exhibition and the 1970 New York ‘Software’ exhibition, avant-

garde art and technological experimentation went their separate ways.  Conceptual Art 

emerged as dominant while computer art was marginalized to the aesthetic ghetto of 

separate art-science-technology festivals (Ars Electronica, Inter-Society for the 

Electronic Arts (ISEA) and Association for Computer Machinery’s Special Interest 

Group on Graphics and Interactive Techniques (ACM SIGGRAPH)).  Gere (2002: 104) 

argues that a primary reason for this exclusion was the growing sense that technology 

could no longer be regarded as an innocent mechanism of social progress.  Instead, at the 



   46

radical tail end of the 1960s, it came to be associated with the regime of exploitative 

instrumental rationality.  Aspiring to create art with a computer seemed at best wishful 

thinking and at worst an alibi for power. 

Of course, this is to render the 1960s Art and Technology movement thoroughly 

unambiguous, when its relation to technology was actually more complex.  For a start, 

the aesthetic questions that the Art and Technology movement raised were clearly 

continuous with dominant strands of avant-garde practice.  Their reflections on the 

mechanical, the automatic, and the serial traced very legible links to central themes 

within Dada, Constructivism, 12-tone music, the OuLiPo, etc.  They embraced the 

technological not simply as another (mistaken) sign of the aesthetic, but as a means, in 

classic avant-garde fashion, to undermine the notional autonomy of art.  The alliance 

between art and engineering served both to question art’s complacent distance from the 

world of technologically manufactured things and engineering’s lack of concern with 

issues of human value and imagination.  In this sense, technological art maintained a 

critical dimension.   It was never simply affirmative.  Edward Shanken argues that the 

reflective and parodic character of the Art and Technology movement’s engagement with 

technology is often overlooked.  Actually their work is ‘infused with irony, their 

technological or pseudo-technological components must be interpreted as parodies of 

scientific structures of knowledge and their uncritical application in art and society.’ 

(Shanken, 2004: 246). 

Programming, as a specific form of technological engagement, was awkwardly 

positioned in terms of the split between technological and conceptual tendencies.  Unlike 

heavy bits of machinery, it could hardly be condemned as basely material.  Indeed the 

curator of the 1970 ‘Software’ exhibition, Jack Burnham, explicitly positioned software 

as a metaphor for the properly conceptual character of art (Shanken, 1998: 1).  The latter 

was modelled on the immaterial and system-focused realm of computer software.  The 

notion of software provided a bridge between Cybernetics (with its concern with the 

techno-ecology of systems), Structuralism (with its concern with language and culture as 

an abstract combinatory system) and Conceptual Art as a formal and critical interrogation 

of dimensions of meaning and process.  Yet despite its status as a metaphor for art and as 



   47

a bridge between a variety of emerging modes of reflecting on systems, software 

programming – in its clear orientation towards the dimension of machine process – could 

hardly avoid the consequences of the more general technological exclusion.  The ‘good’ 

abstract conceptual stuff of programming was sublated into the algorithmic play of 

Conceptual Art (the instructional drawings, for example, of Sol LeWitt), while the ‘bad’ 

material residue of executable code was abandoned. 

The consequences of this split were felt for more than two decades.  The experience 

of the British artist, Paul Brown, is representative.  As a young artist he was inspired by 

the provocative blurring of boundaries between the fields of art and science in the 

London Cybernetic Serendipity exhibition (Brown, 2003: 1).  He became interested in 

computers, particularly as a means of exploring issues of generative structure and process 

related to the emerging field of artificial life.  For this reason, he argues, his work 

attracted little mainstream interest: 

Thanks to my longstanding interest in computational systems as a medium for the 

visual arts I have been relegated to the fringes of the arts mainstream for most of 

my career. (Brown, 2000: 2) 

He was not altogether unhappy about this exclusion.  Alienation had its perks (alternative 

festival circuits and funding sources).  When he detected a new interest in digital art from 

the ‘global art mafia’ (Brown, 2000: 2) in the early 1990s, he was relieved to find that it 

was thoroughly superficial ‘as a unique new paradigm for the arts quickly fell prey to the 

[…] “no skills please – we’re postmodernists” kind of rhetoric that the international 

contemporary arts scene use to defend their position whenever it is threatened’ (Brown, 

2000: 2).  Very apparent is the continuing sense of slight associated with Conceptual 

Art’s rejection of the technical aspect of process – its attempt to reflect critically on the 

nature of systems without literally partaking of their material technical forms.  While on 

one level Paul Brown’s stance is practice-focused and vehemently anti-theoretical, at 

another level it represents a meta-critique of the notion of critique itself – of the 

assumption that critique can be purely articulated apart from dimensions of technical 

process. 



   48

In his short essay ‘The Death of Computer Art’, Manovich (1996) reflects upon the 

incompatibility between the art world and alternative networks of creative computing.  

The art world, which he terms ‘Duchamp-land’, is characterized by a concern with 

conceptual ‘content’ and critique, while the sphere of creative computing (‘Turing-land’) 

focuses on technological novelty and upon exploring the aesthetic possibilities of the 

computing medium.  According to Manovich, the two tendencies are inevitably opposed 

and any attempt to integrate them is bound to fail: 

What we should not expect from Turing-land is art which will be accepted in 

Duchamp-land.  Duchamp-land wants art, not research into new aesthetic 

possibilities of new media. (Manovich, 1996) 

Some five years later, Cramer (2001) reassesses Manovich’s claims and argues that the 

distinction is overly simplified.  He rejects the association of ‘techno-positivist’ computer 

art with the founder of modern computer science, Turing, arguing that the latter’s work, 

the discipline of computer science and wider hacker culture can be deeply reflective and 

ironic.  While acknowledging the point that dominant strands in computer art, associated 

with exhibition and research contexts such as Ars Electronica and Zentrum fur Kunst und 

Medientechnologie (ZKM), reveal utopian tendencies, he argues that there are ‘subtle 

transitions between both options’ (Cramer, 2001).  How did this more nuanced 

perspective develop?  What had changed during those five years to prepare the way for 

software art? 

New Relations 

Very generally, the period between 1996 and 2001 was one of massive growth and 

consolidation of digital culture within Western societies.  The proportion of home 

ownership of computers in the US, for instance, increased from about thirty to fifty 

percent (Leigh and Atkinson, 2001: 3) – a faster rise than had occurred in the whole past 

decade.  The web also experienced exponential growth, gaining a strongly commercial 

focus and becoming much more technologically sophisticated.  If early web sites were 

mainly static html pages, now they became dynamic, database driven sites, linking 

complex back-end technologies to increasingly self-consciously designed and interactive 



   49

front-ends.  The computer game industry also gained vital impetus.  ID Software’s 

seminal first-person shooter, Quake, was released in 1996, pushing the real-time display 

of 3D computer graphics to an unprecedented level.  Furthermore, a whole suite of 

‘creative software’ and hardware appeared that enabled the first wave of accessible 

digital photography, video, audio and multimedia.  

Within this context, it was no longer possible, as an artist, to ignore digital culture 

and technology.  It demanded attention and engagement.  The web became a key area of 

concern.  If a major prior focus of cultural critique had involved exploring the dimension 

of language within the apparently intuitive media of photography and film, the internet 

represented a far more literally code-based medium.  Engaging with code was no longer a 

matter of exposing hidden ideological mechanisms, but one of deconstructing the actual, 

material – abstractly inclined and pragmatically procedural – texture of power relations.  

Net art drew upon the radical traditions of Dada, Situationism and Fluxus to provide a 

deliberately low-tech critique of the politics and aesthetics of the mainstream web 

(Weibel and Druckrey, 2001; Paul, 2003; Tribe and Reena, 2006).  Olia Lialina’s My 

Boyfriend Came Back from the War (1996) provides a classic example, rethinking the 

web page as a strange conjunction of hyper-text and film montage.  The field of net art 

played a crucial role in highlighting the space of code and established a vital context for 

artists to develop relevant technical skills.  In writing their own html pages, artists gained 

insight into the technical nature of the web and a pathway to more dedicated forms of 

programming.  Another pathway was provided by proprietary multimedia software 

packages, such as Macromedia Director and Flash, that included powerful and accessible 

scripting languages. 

Net art grew increasingly technically ambitious during this period.  No longer 

content to adhere to the conventional notion of the web as a network of tidy discrete 

pages, artists began to process html code themselves, creating alternative browsers that 

represented the web as dynamic, code-centred space. The London collective I/O/D’s Web 

Stalker (1997) software is a famous alternative browser.  The software provides no 

coherent assembled pages, only visible html code and maps of data and their networked 

relationships.  It portrays the web very explicitly as a coded abstraction.  Another 



   50

example is Mark Napier’s Shredder (1998), which creates a jumbled collage of page 

elements.  The work emphasizes that code and interface are not the same thing – code 

opens up a space of playful re-combinatory possibility that ordinary browsers repress.  In 

their emphasis on deconstructing code processes through the mechanisms of a code work 

– as well as in their combination of conceptual-political themes and technical engagement 

– these works appear as seminal, anticipatory pieces of software art. 

Alongside artists intervening in the technology, technologists were doing things 

that strangely resembled critical art; specifically in terms of modeling and realizing the 

kinds of collaborative social relations that radical art was intended to foster.  In 1999, the 

Ars Electronica festival awarded their Grand Prize to the Linux operating system.  Many 

artists were appalled, questioning how a purely instrumental technological project could 

possibly warrant an art award (especially when net artists were still struggling to obtain 

mainstream recognition) (nettime mailing list, 1999).  Others, however, recognized it as 

useful provocation; a gesture from the aesthetic ghetto concerning the nature of genuine 

radicalism.  This award also suggested the increasing confidence and cultural relevance 

of alternative contexts such as Ars Electronica which were no longer so clearly marginal 

and out of step with currents of cultural critique.  According to Jacob Lillemose (2004: 

141) a third wave of Conceptual Art developed in the early 1990s that was characterized 

by a heightened sense of social and political activism.  It was concerned to intervene 

within structures of power rather than to enigmatically reflect upon systems of meaning 

within the autonomous and inevitably compromised space of avant-garde art.  These 

currents of conceptualism recognized GNU/Linux as a highly relevant paradigm for 

alternative cultural-technological practice. 

If Ars Electronica was established in the late 1970s to question the neat divisions 

between art and science, now this work was being undertaken at a far more general 

cultural level.  The web provided a context – and a multitude of particular contexts – in 

which artists and technologists could meet beyond the straightjacket of conventional 

disciplines.  Another context was the rapidly expanding field of computer gaming, which 

led programmers to take an increasing interest in issues of graphic visualization and 

interaction, and artists to take a more dedicated interest in the potential for non-linear, 



   51

generative abstraction that programming enables.  Multimedia production served as 

another important interdisciplinary context.  Neither art nor science, it appeared as a 

messy, non-rigorous, exploratory field in which artists could pretend to be technologists 

and technologists could pretend to be artists.  All manner of significant exchange 

occurred on the basis of the inevitable and uncertain relation between the programming 

‘back-end’ and the visual ‘front-end’.  Specifically, the technologically-oriented web 

forums provided an important model for social collaborative communication and 

practice.  Unlike many of the agonistically conceived cultural theoretical forums, the 

technological forums were generally friendly places structured to provide information, 

answer questions and facilitate community. 

One other development is worth mentioning.  The first decades of personal 

computing had focused on making the computer as humanly accessible as possible.  They 

had been dominated by the holy grail of the natural, intuitive interface.  In the late 1990s, 

however, there was a shift in orientation back to the paradigm of text.  This was 

associated particularly with the rise of the GNU/Linux operating system, which placed 

the emphasis on acknowledging computational complexity – allowing end users to 

engage with their systems in sophisticated ways via the command line interface.  This 

made computers accessible in a different sense, not so much as simulated worlds and 

transparent (encapsulated) tools but as spaces of meta-level organization that demanded 

human intervention.  A similar philosophical stance led many artists to shift away from 

the use of commercial ‘creative software’ towards an engagement with the medium of 

programming itself as a more open and genuinely creative space.  Within the overall 

context of commercial computational complexity, this represented a deliberate 

anachronistic turn.  Artist-based programming integrated development environments such 

as John Maeda’s Design By Numbers and Ben Fry’s and Casey Reas’s Processing were 

deliberately structured as code-based interfaces.  Running against the trend to make 

everything accessibly visible, they made the ordinarily invisible space of code manifest 

and accessible. 

Much had changed then in the five years that separate Manovich’s and Cramer’s 

views on the relation between computer art and mainstream art.  Mainstream art had re-



   52

engaged with technology and technological art had become more mainstream – broaching 

questions that critical art itself wished to pose.  The genre of software art appears within 

this context – at least initially – as a moment of reconciliation of conceptual and 

technological traditions.  At the same time, however, it also provides a context for the 

reaffirmation of traditional distinctions. 

Software Art 

Contemporary software art achieved its first notable recognition in 2001 when a 

prize for ‘artistic software’ was awarded at the Berlin Transmediale media arts festival.  

Subsequent key events included the 2002 Read_Me 1.2 Software Art/Software Art 

Games festival (Moscow) and in the same year the Whitney Museum’s CODEeDOC 

exhibition (New York).  It is worth examining the critical statements and work associated 

with these events as a means of indicating the overall characteristics of software art, as 

well as specific tensions that constitute the field. 

As I suggested in the previous chapter, the jury for the Transmediale festival define 

software art precisely in terms of its difference from new media.  Software art, the jurors 

argue, shifts the focus from the visible surface of digital art to the constitutive space of 

code.  They regard programming code as fundamentally different from traditional media 

in that the former is not a passive intermediary; code does something, it is executable, it 

performs actions: 

Perhaps the most fascinating aspect of computing is that code – whether displayed 

as text or as binary numbers – can be machine executable, that an innocuous piece 

of writing may upset, reprogram, crash the system. (Transmediale.01 Media Arts 

festival jury, 2001) 

Programming represents a new condition of writing, in which written abstraction obtains 

powers of literal agency.  On this basis, the jury rejects the conventional notion of 

software as a tool.  It is less the instrumental character of a tool, in this instance, that is at 

issue than its passivity.  They argue that ‘digital code is virulent’ (Transmediale.01 Media 

Arts festival jury, 2001) and that it can only appear as a tool by disguising its actual 



   53

operations.  Software art then has the potential – and crucial aesthetic duty – to expose 

the machinations of code, to make code visible.  At the same time they suggest that ‘it is 

itself a ground for creative practice’ (Transmediale.01 Media Arts festival jury, 2001).  

This is an interesting addition, because it suggests, already, an area of tension and a 

lingering basis of distinction; at one level software art is represented as a form of critical 

revelation – as a meta-level reflection on code processes – while at another level it 

constitutes a basis for creative experimentation.  Beyond a motion of critique of dominant 

discursive and operational regimes of software, it seems that software art can also explore 

the formal conventions of the medium.  Both tendencies are founded upon the making 

visible of code that is constitutive of software art.  Software art as a form of critique 

necessarily takes shape as a coming to critical consciousness of code, while software art 

as aesthetic experimentation depends upon the medium of code distinctly appearing.  The 

jury makes a deliberate effort to be inclusive, to encompass formal, critical-contextual 

and other tendencies: 

Software art could be algorithms as an end to themselves, it could subvert 

perceived paradigms of computer software or create new ones, it could do 

something interesting or disruptive with your computer, it could be creative 

writing, it could be science. (Transmediale.01 Media Arts festival jury, 2001)  

The 2001 software art prize was shared between three works.  Two were visually 

abstract, generative software projects (Antoine Schmitt’s Vexation 1 and Golan Levin’s 

Audiovisual Environment Suite) while the third project, Adrien Ward’s Signwave Auto-

Illustrator, included aspects of both software criticism and formalist experimentation.  A 

semi parodic re-make of the commercial vector drawing package, Adobe Illustrator, the 

interface represents an ironic reflection on the idiom of instrumental software, while the 

actual drawing operations reveal a concern with procedural pattern-making and 

generative artificial life.  

In a subsequent article, two of the festival jurors, Cramer and Gabriel, describe the 

historical context of the emerging genre in terms of its links to the tradition of Conceptual 

Art and, more specifically, to strands of socially-critical, meta-reflective net art (Cramer 



   54

and Gabriel, 2001).  They distinguish two tendencies within Conceptual Art, one that 

focuses on issues of immaterial structure and system (associated with artists such as 

Henry Flynt, Sol LeWitt, John Cage and La Monte Young) and another that is more 

socially and critically focused (the later Joseph Kosuth, Hans Haacke and Vito Acconci).  

The former appears as a mode of formalism, while the latter has a cultural, contextual and 

activist orientation.  According to Cramer (2002), these contrasting tendencies also have 

a more recent basis in the difference between two mid-90’s schools of British 

experimental new media practice – the politically inclined work of the artist’s groups 

I/O/D and Mongrel, and the more formalist work associated with the “eu-gene” 

generative art mailing list.  Cramer and Gabriel tend to privilege strands of critical 

activist practice, suggesting that software art ‘has become less likely to emerge as 

conceptualist clean-room constructs than reacting to these stereotypes’ (Cramer & 

Gabriel, 2001: 3).  The Read_Me 1.2 and CODeDOC exhibitions represent two different 

responses to this heritage.   

Leaning Toward Critique 

The Read_Me 1.2 festival can be interpreted as a development of the critical-

cultural orientation within software art.  However, the jury’s classic definition of software 

art maintains the emphasis on an inclusive approach: 

Since read_me 1.2 is one of the pioneering festivals of software art we felt it 

necessary to open up the field rather than to prematurely narrow it down.  We 

consider software art to be art whose material is algorithmic instruction code 

and/or which addresses cultural concepts of software. (Read_Me 1.2 jury 

statement, 2002) 

If strands of aesthetic experimentation and critical-cultural practice can coexist within 

software art it is because both entail a close engagement with the labour of programming.  

The crucial difference between the contemporary situation and the earlier moment in 

which computer art and Conceptual Art diverged is that contemporary conceptualism, 

whether formalist or critical, is determined to get its hands dirty – to engage with code 

practically.  For critical software art this entails an effort to intervene within the culture of 



   55

software rather than to remain at a safe distance.  The call for entries to the Read_Me 1.2 

festival articulates this engaged perspective: 

In order to stay current, an artist must acquire new methods of working in social 

spaces and react to the questions that concern society.  An artist immersing 

himself in the production and software development spheres – areas allegedly 

intended to facilitate our lives through “progress” – has a chance to find his 

audience and to actually influence culture. (Read_Me 1.2 festival organizers, 

2002) 

The critical-cultural orientation is made very explicit in the three styles of code entry that 

the festival invites: code that leads standard software ‘astray’; deconstructive code; and 

‘[w]ritten from scratch’ software that resists the model of software as a rational, 

pragmatic tool’ (Read_Me 1.2 festival organizers, 2002). 

The overall prize was split between three software projects: Mark Daggett’s 

Deskswap, which allows users to load other people’s desktops from around the world as a 

means of reflecting upon issues of globalization; Eldar Karhalev and Ivan Khimin’s 

ScreenSaver, which is a set of simple (non-technical) instructions for altering the 

Microsoft operating system screensaver; and Joshua Nimoy’s Textension, which playfully 

re-conceives word-processing as the creation of concrete-poetry style visual patterns of 

text.  The emphasis is clearly on work that is critical rather than formalist, although 

Textension, like Signwave Auto-Illustrator, manages to bridge both strands of practice – 

shaping critique as a form of speculative aesthetic enquiry. 

Leaning Toward Formalism 

At least in terms of its overall curatorial conceit, the Whitney CODe_DOC 

exhibition (2002) represented a more formalist approach.  It provided its twelve 

participating artists with a single conceptual exercise: ‘This code should move and 

connect three points in space.’  In its minimal abstraction, this clearly recalls the 

procedural rhetoric of formalist Conceptual Art.  The Transmediale.01 jury had lamented 

the lack of visible source code amongst the submitted works (Transmediale.01 Media 



   56

Arts jury, 2001).  CODe_DOC responded to this concern by placing a primary emphasis 

on displaying source code.  Project links on the website 

(http://artport.whitney.org/comissions/codedoc/index.shtml) contained a thumbnail image 

of the work, the artist’s name and their specific programming language.  Clicking on a 

link led directly to the artist’s source code – only there, perhaps, in the code comments 

could you actually find the title of the work, and only there, by scrolling to the end of the 

code, could you discover a link to ‘the work’ itself.  One of the works, Alex Galloway’s 

What You See Is What You Get, provided no visible interface whatsoever.  A collection of 

short, illicit, apparently malevolent scripts, the project was not run but read, legibly 

demonstrating how easy it is to programmatically choreograph social (informational) 

disorder. 

Galloway’s work appears as the most pointedly critical-activist.  Other works in 

this camp included Sawad Brooks collage of global news sites, Global City Front Page 

(Brooks, 2002), and Golan Levin’s humorous reflection on the absurdities of US foreign 

policy (paranoia), AxisApplet (Levin, 2002).  Levin’s work provides a map of the world.  

The user clicks on any three countries and a text note explains the nature of the axis.  

Clicking on Brazil, Russia and Australia, for example, produces an ‘axis of huge, oil-

producing, vodka-exporters’. In his code comments, Levin explains: 

President Bush’s assertion that North Korea, Iraq and Iran form an ‘Axis of Evil’ 

[…] was more than a calculated political act – it was also an imaginatively 

formal, geometric one, which had the effect of erecting a monumental, virtual, 

globe-spanning triangle. (Levin, 2002, code annotation)  

Here then a strange link is opened up between cultural and formal interests.  

Culture appears as metaphor for a dimension of abstraction, which seems a back-to-front 

way of regarding things but also indicates the charged, metaphoric character of coded 

abstraction.  It is less about the immediacy of vision (in a classic modernist sense) than 

the instantiation of aspects of structure and system.  I will come to the more explicitly 

abstract works (which constitute half of the overall works) shortly, but three other works 

represent an interesting transition to more general formal concerns. 



   57

Maciej Wisniewski ’s The Meaning of Life Expressed in Seven Lines of Code is an 

enigmatic work that addresses issues of time and distance through the combinatory 

simultaneity of grid-based display.  It establishes a poetic friction between the array-

based structures of code and dimensions of human experience.  Wisniewski suggests that 

the work ‘depicts a skewed view of geography, time and history, whose space and time 

elapses during the day and at night and stretches itself at sunrise and sunset’ (Wisniewski, 

2002, code annotation).  The concern here is not with the politics of software but with its 

poetic formal imaginary.  

Brad Paley’s CodeProfiles reveals a strongly self-reflexive concern with software.  

It is a work in which code seems to display itself.  The code appears in a semi-abstract 

manner as sets of programmatically formatted lines.  Moving the mouse across specific 

lines displays the actual code.  The code’s operations are depicted as waves of changing 

line colour and white arcs that communicate between one code module and another.  

Paley describes the project in the following terms: 

The code reads in its own source and displays it in a tiny font, then moves three 

points in “code space”.  It essentially comments on itself. (Paley, 2002, code 

annotation)  

CodeProfiles is cast then as a work of recursive meta-reflection.  It charts associations 

not only to Conceptual Art but to the recursive irony of Turing and hacker culture (the 

latter is perhaps most famously evident in Richard Stallman’s acronym GNU, which 

stands for GNU is Not Unix). The work shapes reflection then in formalist rather than 

critically engaged terms.   

John Klima’s Jack and Jill (Klima, 2002) is a playful meditation on game-based 

parametric characterization and life.  Jack and Jill represent two points and the bucket at 

the top of the hill represents the third.  A set of simple radio buttons allows the user to 

control whimsical aspects of each character’s behaviour, from how eager they are to get 

the bucket to whether or not a male chauvinist or feminist approach is preferred.  The 

characters then respond appropriately – typically frenetically crashing into one another as 



   58

they run up and tumble back down the hill.  The references here are to the cultural field 

of gaming; however the work represents less an example of cultural critique than a 

whimsical meditation on aspects of conventional game form and modes of programmatic 

identity. 

The remaining six works are much more explicitly formal in orientation, adopting a 

strategy of visual abstraction.  Martin Wattenberg’s ConnectApplet provides a 

representative example.  A set of three points form a triangle hemmed in by rippling 

lines.  The points can be moved to alter the triangle, which slowly transitions to its new 

state.  Within this context, visual abstraction serves as a means of signalling the 

structuring force of code as another order of abstraction.  As Brad Borevitz suggests, 

‘[t]here is a way in which the basic programmatic logic of the work is as clearly evident 

in its visual presentation as it is in the code itself’ (Borevitz, 2004: 304).  The work 

represents a reflective circle, with the visualization summoning an awareness of the code 

and the code structuring the visual display.   

Other works by Mark Napier, Kevin McCoy and Camille Utterback work in a 

similar fashion (Napier, 2002; McCoy, 2002; Utterback, 2002).  Mark Napier’s 

SpringyDotsApplet is interesting because it introduces a third dimension of conceptual 

abstraction.  Alongside the code and the softly transparent algorithmic drawing there are 

dots and lines that serve to further reinforce the relation between the conceptual layer of 

mathematical abstraction and the manner of visualization.  The dots and lines make the 

underlying constraints that structure the formal exercise lucidly apparent. 

Scott Snibbe’s Tripolar draws flower-like squiggles based on a chaos algorithm; it 

simulates a pendulum swinging above three magnets.  This is the stuff of school science 

fairs, except that Snibbe’s code comments suggest another level of concern: 

The source code demonstrates the “meta-chaos” of the program itself.  A set of 

key variables defines all the parameters of the simulation.  Changing any one of 

the parameters radically alters the artwork, in most cases making it non-functional 



   59

– in some cases the program will hang, in others the paths will explode, implode 

or oscillate.  (Snibbe, 2002, code annotation) 

The software reveals, once again, a recursive aspect.  It stages chaos in terms of its own 

parametric deconstruction.  Evident here is a peculiarly abstract rendering of critical-

cultural concerns, in which culture is replaced by a cosmological perspective on the 

behaviour of systems.  Deconstruction becomes less political than mathematical and 

scientific. 

A More Fundamental Tension 

I have described a context for software art, some crucial initial events and two 

broad aesthetic tendencies.  It is beyond the scope of this study to offer a detailed survey 

of the development of software art since then.  Both formal and activist tendencies are 

still very much in evidence, although the former probably has greater prominence.  The 

formalist-inclined Processing integrated development environment won the Gold Nica in 

the Net Vision category at the 2005 Ars Electronica and has provided an important 

context for experimental digital arts practice.  Many art schools around the world have 

adopted it as a teaching tool.  Processing has also moved beyond an exclusive focus with 

code to engage with the sphere of physical computing.  A number of sister projects such 

as the Arduino microcontroller/IDE provide an accessible means for artists to engage 

with the creative possibilities of electronics and kinaesthetic-interactive new media.  

Another area of expansion has been into the field of mobile device computing and 

locative media.  These are efforts to move experimental software art beyond the narrow 

scene of conventional desktop computing.  Critical-cultural software art lacks this 

technically-oriented identity.  It coheres instead in events such as the annual Read_Me 

festival, community sites such as the Run_Me software art archive, and a range of 

publications, such as the proceedings of the 2004 Software Art & Cultures Read_Me 

festival (Goriunova and Shulgin, 2004) and the writings of Fuller (2003) and Cramer 

(2002, 2005).  

While I have focused on the difference between formalist and critical-cultural 

software art, and the distinction certainly has currency within the field, the distinction is 



   60

also, in my view, deeply problematic.  It works to obscure and repress more fundamental 

tensions that affect the character of software art.  Apart from any critical questioning of 

the nature of coded systems or of the culture of software, software art suggests even more 

basic questions concerning the relation between software (as a space of instrumental 

making) and art (as a space of aesthetic making).  The current emphasis on formalism 

versus culturalism (Cramer, 2002; Lillemose, 2004) works to neglect the relation to 

software precisely.  It describes a tension within art, within the space of art’s 

conventional imaginary.  Formalist software art, it would seem, sublates the discursive 

practice of technical software into a properly aesthetic, purely conceptual, space, while 

critical-cultural software distances itself from the rational and instrumental dimensions of 

software to focus entirely on gestures of critique and deconstruction.  In both instances, 

software is lifted up to art.  Software art is regarded as software stripped of its awkward 

and embarrassing features to become art, abandoning its base concern with efficiency, 

disguise and tool-based functioning to appear either as a space of formal purity or of 

socially engaged action.  But this is to ignore that both formalist and critical-reflective 

software art engages with code at a practical level and that this engagement has 

consequences that affect art as well as software.  Formalist software art does not simply 

deal at the level of the rarefied aesthetic concept; it writes software, it engages with the 

medium as a specific discursive field.  Similarly critical-cultural software must actually 

work (if it is to be literally software and not an aesthetic commentary on code).  It must 

function.  It must adhere to the same regimes of abstraction, procedure and rational 

efficiency that constitute the language of instrumental software production. 

My interest in the second half of this thesis is to explore various aspects of this 

tension between software and art.  The tension takes shape in terms of three basic 

dilemmas that confront software art: the dilemma of position; the dilemma of visibility; 

and the dilemma of recursion. 

The Dilemma of Position 

How is software art to conceive its relation to more general practices of software 

production?  Particularly, how is it to conceive its relation to the spectre of commercial 

software production?  Programming, after all, is not simply a language to be freely 



   61

spoken; it is socially and economically situated.  There are specific conditions of speech.  

In old-fashioned Marxist terms, the dilemma here is of conceiving the relation to the 

means of production. 

In their recent survey of currents within contemporary digital art, At the Edge of 

Art, Joline Blais and Jon Ippolito (2006) employ biological metaphors to describe the 

strategic position of digital art.  Society is conceived as a body that is really and 

imaginatively assaulted by the virus of technology.  Digital art is cast as a protective 

antibody that adopts the form of viral technology in order to defeat it (Blais and Ippolito, 

2006: 8-13).  But how can the integrity of the social be conceived apart from the thought 

of technology?  If, as Blais and Ippolito argue, technology is not only the exteriority of 

machines and code, but also something that is vitally socially constructed (Blais and 

Ippolito, 2006: 10) – that exists as much ideologically as materially – then technology is 

less a neatly exterior threat than an integral social tendency.  Positioning art as an 

antibody also seems problematic.  How, for instance, can art possibly match the power of 

the technological virus?  How does it hope, within the fragile and contradictorily 

autonomous space of art, to actually defend this society (stripped of its technological 

basis, conceived in vague, romantic humanist terms) from such a huge and abiding 

threat?  Blais and Ippolito’s conception of digital art oversimplifies the complex relations 

between society, technology and art, accords digital art an impossible measure of social 

responsibility, and reduces art to a role of amelioration and protection (neglecting its 

irruptive potential). 

A more persuasive model of art’s social positioning is provided by the Frankfurt 

School theorist Theodor Adorno.  In his last and unfinished work, Aesthetic Theory, 

Adorno (1997) emphasizes the contradictory character of art’s autonomy, which at once 

resists regimes of instrumental rationality and is necessarily implicated within them; not 

only in terms of its commodity status but also in terms of its legibility as a spiritual alibi 

for capitalist social relations.  While Adorno approves art’s capacity to model alternative 

social relations and non-exploitative forms of labour and manufacturing, he is also keenly 

aware that this space of autonomy – in which alternatives are projected – is illusory, 

compromised, and thoroughly determined by the wider social relations that enable and 



   62

circumscribe it.  In this tension, in this friction, in this sense of contradiction, Adorno 

discovers art’s genuine critical capacity.  Art must tease out these social tensions in the 

very texture of the work – less at the level of shaping explicit political messages than in 

terms of engaging rigorously with the technical, formal and material conditions of a 

specific medium. 

In this light, if software art wishes to regard itself as a form of reflective critique, 

then it must acknowledge its dependence on the broader institutional and discursive space 

of conventional software, its involvement in its language, mechanisms and cultural forms, 

and its relative lack of social purchase and cultural power.  It is this awareness of 

dependence, marginality and inevitable association that lends software art the capacity to 

pose worthwhile questions for both art and the realm of a narrowly conceived 

instrumental rationality.   

My aim in chapter 5 is pursue this question of position within the specific context 

of software art’s relation to the 3D graphics engine.  I argue for a notion of anachronistic 

experimental practice that both draws upon and questions the technological and aesthetic 

models provided by commercial software production.   

The Dilemma of Visibility 

Software art insists upon making code visible.  This is its primary demand.  Only 

by making code visible can it constitute programming as aesthetically reflective.  Yet 

code itself would seem to resist visibility, and to resist it in a least two distinct ways: 

firstly by deliberately, structurally, hiding; and secondly by disappearing within the 

context of machine functioning.  Let us consider each of these two modes of resistance. 

Hiding 

The first is classically evident within object-oriented programming in terms of the 

principles of abstraction and encapsulation (see chapter 2).  Abstraction is not only the 

positive representation of something in a symbolic form; it also indicates a motion of 

leaving behind.  That which is abstracted no longer itself appears.  It is replaced by the 

abstraction.  While this work certainly has a reflective aspect, its consequences are to 



   63

make reflection itself more difficult.  The many layers of computational process work 

precisely to make lower layers disappear.  The principle of encapsulation denotes a 

particular form of this disappearance in which specific internal features of an object are 

deliberately hidden from view in order to protect them from unwarranted interference and 

to enable the simplicity of a general public interface.  Encapsulation works both to 

protect the integrity of individual objects and to enable them to be treated as simple 

building blocks in more complex structures.  A work of hiding then is implicit within the 

linguistic structure of contemporary programming.  Object-oriented programming 

involves choreographing a play of hiding and manifestation.  Within this context, how is 

the relation to art to be described?  What does it mean to insist that code be visible, that it 

resist its own discursive strategies, and plainly appear? 

The approach, adopted by the CODeDOC exhibition, of literally displaying code 

may have been appropriate within the context of drawing attention to this normally 

neglected space, but seems hardly adequate as a typical strategy.  For a start, code is 

simply not legible to non-programmers.  Visible code makes the very general point that 

code is significant, but beyond that it serves as little more than a connotative surface – 

indeed it can quickly work to mystify software art, to suggest some realm of arcane, 

abstract power that bears little relation to actual, practically-directed programming.  Even 

programmers have difficulty simply reading code.  Even the person who actually wrote 

the code can have trouble making sense of it (especially after a few days or weeks away 

from it).  Code is most legible as it is being written, especially in the alternation between 

writing and execution.  In this sense, it resists entirely contemplative visibility (the 

traditional form of the aesthetic).  Code is engrossing within the overall event space of 

writing, performance and debugging.  To some extent, the notion of software art 

represents the artist-programmer’s fantasy that this space of creation may somehow take 

literal, exhibitable shape for an audience.  But this is not really possible.  Programming is 

essentially participatory rather than something to be seen (an aesthetic spectacle).  In 

order to become visible it has to persist with abstraction.  It has to hide and shape 

disguises.  It has to render the dimension of code metaphorically apparent.  Cramer and 

Gabriel acknowledge this point when describing the Web Stalker alternative browser: 



   64

The code of the Web Stalker may dismantle the code of the Web, but does so by 

formatting it into just another display, a display which just pretends to “be” the 

code itself. (Cramer and Gabriel, 2001: 2) 

In this sense, the notion of rendering code visible entails something other than a 

puritanical resistance to code’s processes of disguise and layering.  Revelation is itself a 

staging, a manifestation, a motion away from origin. 

Functioning 

The second mode of disappearance is operational.  Code disappears in the motion 

of its running.  It passes away from itself.  This reveals a fundamental, existential form of 

the instrumental, for the instrumental is that which does not stop, which does not rest 

upon itself, or imagine itself as an end, but that rather directs attention elsewhere, 

shaping, as Heidegger argues in relation to technology, a ‘bringing forth’ (Heidegger, 

1978: 293).  So to make code visible is ultimately to insist that it stop, that it no longer be 

constituted as a passage into functioning.  Beyond this global context of functioning, 

there is the whole question of how art can engage with code’s integral and intricate 

instrumental character, of the way it is structured at all levels in terms of the demands of 

efficient running.  Could this actually represent the genuine critical challenge of software 

art: to somehow find the means to reflect at the limits of reflection (within the blindness 

of process)? 

The dilemma of visibility raises then a broader issue: strategies of disguise and 

disappearance are aspects of the instrumental character of software.  Inasmuch as 

software art produces ‘working’ software it inevitably engages with issues of silent, 

hidden and efficient operation. I explore the issue of software art’s relation to the 

instrumental character of software in chapter 6. 

The Dilemma of Recursion 

In an article on Cramer’s conception of software art, Troels Degn Johansson argues 

that Cramer paints software art into a corner (Johansson, 2004: 151).  All it can do is 

reflect on its own conditions of formal or cultural-critical being.  It is stuck in a recursive 



   65

loop of endless and ultimately disabling self-analysis.  This is evident in the strategies of 

visual abstraction within formalist software art, as well in the emphasis on meta-level 

critical commentary within culturalist software art.  Partly because the mechanisms of 

code are so hidden within conventional software, software art must devote all of its 

energies to the contrary work of reflective exposure.  Is this inevitable or is there the 

potential to represent software art differently, to imagine code – the mechanisms of code 

– as a form of opening?  If so, how can this work of opening be enabled without 

compromising the work of reflection?  One mode of opening is the relation to the 

discursive space of instrumental software that software art maintains as an inner tension.  

My aim in Chapter 7 is to explore three other possibilities of opening. 

The first is straightforward; it involves tracing relations beyond the apparent 

aesthetic enclosure of software art, exploring its links to wider aesthetic concerns and 

forms of media.  Rather than constituting an entirely unique and autonomous discursive 

space, software art is shaped by and enters into relation with all manner of other 

traditions and technical forms of art.  I am particularly concerned with how aspects of my 

video art practice anticipate and are affected by my software art practice. 

The second form of opening involves conceiving a relation between software and 

the alterity of the real.  In its abstraction, in its systematic character, software may seem 

altogether removed from a traditional concern with the otherness of real things, but 

precisely through its difference it can also manifest a return; one that takes shape as a 

friction and poetic summoning.  This concept is explored in relation to my interactive 

documentary project, Halfeti – Only Fish Shall Visit. 

The final possibility of opening involves questioning the thinking of recursive 

closure itself.  A genuine reflection upon software reveals a dimension of non-identity 

within the texture of computation.  Rather than a repetitive finitude that is absolutely 

clear, transparent and reflective – there is a dimension of alterity that breaches software 

from within.  This is evident for me less in programs that deliberately conjure up the 

illusion of organic difference than in works that pursue the binary to the point that it 

suddenly becomes mysterious.  



   66

Conclusion 

This chapter has explored the emergence, bifurcated conception and dilemmas of 

software art.  My argument is that the opposition between formalist and culturalist 

software art works to articulate the field in safely aesthetic terms, ignoring the more 

fundamental tension between instrumental software and reflective art that provides its 

genuine impetus.  The three dilemmas that I have described are all in various ways 

dilemmas of reflection – of the reflective sense of formal or critical autonomy, of the 

aesthetic need to make code reflectively visible and of reflection as a recursive trap.  The 

question of reflection lies at the heart of this thesis.  I wonder about the viability of this 

relentless demand for reflection, the refusal to countenance the possibility that reflection 

may be better subsumed within a process of making rather than regarded as purely, 

autonomously constituted and all consuming.  The following three chapters represent an 

attempt to sketch aspects of this alternative conception. 



   67

Chapter 5 
________________________________________________________________________ 

Oblique Reflections: Software Art and the 3D Games Engine 

 

Introduction 

This chapter addresses the dilemma of position discussed in the previous chapter.  It 

is concerned with how the field of software art conceives its relation to the industrial-

technological infrastructure that surrounds and enables it.  Specifically, how does it 

reflect upon the phenomenon of the 3D games engine?  This chapter considers a range of 

tactical responses to the dilemmas of scale, encapsulation and conventional aesthetics that 

the game engine raises for software art.  The main focus is on the strategy of 

anachronism.  Anachronism resists the rhetoric of technological novelty, working instead 

to discover areas of creative purchase within the detritus of industrial (commercial 

gaming) progress.  

Let us attempt to clarify some of the problems that commercial games technologies 

raise for experimental software art practice. 

Scale and Complexity 

The development of a cutting-edge commercial game depends upon huge financial 

investment and a large-scale, multi-tiered production process that involves work at the 

hardware, software and creative design levels.  Despite the heroic myth of its cottage-

industry genesis – stories of John Carmack and John Romero laboring away in relative 

isolation on Wolfenstein 3D (1992) and Doom (1993), hacking together the architecture 

and iconography of first-person game navigation through sheer force of geeky genius and 

popular cultural will – the 3D gaming engine is clearly the complex product of decades of 

military, scientific and computing/entertainment industry research into the visual and 

interactive possibilities of computer graphics.  This is not to deny the visionary role 

Carmack and Romero played in developing specific technological solutions and, more 

generally, in linking emerging trends in computer graphics to the genre of visceral shoot-

em-up gaming, but it is to insist that 3D gaming engines, like factories and telephone 



   68

systems, are sophisticated industrial forms that resist efforts at individual authoring.  

Their sense of alienating technological scale and complexity presents strategic problems 

for a field such as experimental new media art where the ideology of individual (or local 

level) creative control remains important.  How can artists engage with the potential of 

technologies such as the 3D gaming engine when the scale of the technical apparatus 

radically exceeds the space of individual creative effort? 

Encapsulation 

As discussed in chapter 3, the notion of encapsulation within the field of object-

oriented programming refers to the principle whereby code modules – specific areas of 

data and functionality – are protected from unwanted external modification through the 

creation of explicit public interfaces and a formal etiquette of access definition.  At the 

general strategic level, encapsulation represents an effort to manage technological 

complexity, to enable systems to be pieced together in a modular fashion.  Code modules 

are positioned as black boxes that take input and produce output while the details of 

implementation can safely be ignored.  The whole conception of a gaming engine is 

based upon this principle.  Contemporary game engines often encapsulate their 

functioning to such an extent that it is possible to develop original games without any 

dedicated work of coding at all.  However, this raises a problem of aesthetic purchase.  Is 

it acceptable to bracket the problem of the engine and focus exclusively on the dimension 

of alternative game content, or is a closer engagement with the underlying technology 

necessary?  There is no single answer to this question.  While some so-called ‘art games’ 

represent a fairly straightforward work of game ‘mapping’ (creating new levels and game 

art for an existing engine), software art takes a greater interest in the dimension of code.  

Software art is concerned with the experimental possibilities of code-based generic 

abstraction and spatial-interactive representation that the game engine represents.  It 

wants to crack the game engine open and reinvent it.  The encapsulated character of 

gaming technologies, the many layers of abstraction and hiding that enable their 

functioning are a source of both frustration and inspiration, suggesting all kinds of 

opportunities for experimental intervention and revelation (uncovering). 



   69

Conventional Aesthetics 

Closely related to the issue of encapsulation is the sense that gaming technologies 

(particularly game engines) are not neutral entities.  They encode specific aesthetic 

assumptions.  For example, the emphasis upon perspective, back-face culling, naturalistic 

shading algorithms and the like within 3D graphics engines reveals a clear orientation 

towards visual realism.  While the tradition of avant-garde experimental art is suspicious 

of spatial illusion, commercial media (films and games) position perspective-based 

immersion as the essential axis of representational and interactive aesthetics.  The gliding 

optical vector of the first-person shooter represents space as utterly seamless.  None of 

this comes easily. The technical problem of stitching a three-dimensional game world 

together – of enabling smooth movement from one space to another and of managing the 

display of large complex spaces – is a vital one in 3D engine design.  It typically involves 

the crafty use of portal systems so that the player constantly moves between partial 

worlds (from one rapidly loading data structure to another).  The whole world, as such, 

never exists.  The illusion of holistic space is a bubble with the player at its center.  The 

bubble changes as the player moves about and everything else is darkness (or the barest 

map).  This is, of course, conceptually very interesting, suggesting links to notions of the 

Cartesian subject, etc., but it is not explicitly highlighted within commercial games.  It is 

represented as a technical problem rather than as a creative option worth exploring.  

There is a vital need then to engage with the mechanics of the engine to open up other 

aesthetic possibilities. 

Tactical Responses 

These problems mean that the commercial gaming engine is positioned awkwardly 

for software art practice.  It is tempting (constituting an iconic popular form of virtual 

interaction and suggesting vital areas of cultural and aesthetic enquiry), but at the same 

time arcane, inaccessible and hidden.  How have software art and the broader tradition of 

experimental new media dealt with this problem?  How have they conceived and 

practically negotiated a relation to the technical means of production?  Five strategies 

seem evident: alliance (artists and scientists working together); abstraction (artists 

determining a specific conceptual-aesthetic space independent from the necessity of 



   70

technical engagement); aggregation (artists working together to match the scale of 

industrial production); appropriation (artists co-opting mainstream technologies as a 

mode of critical-deconstructive practice); and finally, and most relevantly for my 

purposes, anachronism (artists abandoning any claims to technological novelty and re-

working aspects of the technological heritage).  Let us consider each of these strategies 

more closely. 

Alliance 

The first strategy involves an alliance between artists and computer scientists.  In 

their famous 1825 article, ‘The Artist, the Scientist, and the Industrial: Dialogue’, the 

social philosophers Henri Saint-Simon and Leon Halevy suggest the possibility of a 

utopian accord between art, science and industry, in which these traditionally separate 

disciplines form an alliance to advance progressive societal interests (Saint-Simon, 1975).  

From a contemporary perspective, informed by the legacy of critical theory, post-

structuralism and postmodernism, this early vision of the avant-garde is likely to appear 

naïve.  We are less confident about the benign legacy of Enlightenment reason and very 

suspicious of the rhetoric of progress.  Nonetheless, contemporary new media often 

summons up the rhetoric of a progressive alliance of artistic, scientific and industrial 

interests.  The British collective Blast Theory provides an example of this approach 

(Blast Theory, 2004).  Their augmented reality games such as I Like Frank (Adelaide 

Fringe Festival, 2004) explore the poetic relations between real and virtual spaces and 

players.  Produced in collaboration with Nottingham Mixed Reality Lab, Blast Theory 

supplies the creative vision, while the Mixed Reality Lab researchers provide the cutting-

edge technical infrastructure.  Blast Theory is also involved in a larger research initiative, 

‘Integrated Project on Pervasive Gaming’ (IPerG, n.d.) which links together a range of 

creative and scientific organizations with the aim of developing ‘a radically new game 

form that extends gaming experiences out into the physical world’ (IPerG, n.d.).  This 

involves exploring ‘new technologies to support the creation of new compelling forms of 

content’ (IPerG, n.d.).  It is worth noting that this strategy of alliance preserves a very 

traditional distinction between creative and technical contributions.  Art focuses on the 

conceptual imaginative realm, while science focuses on the underlying engineering.  This 



   71

strategy maintains its critical aesthetic credibility by occurring at a slight remove from 

the realm of industrial, commercial application.  Alliance is pursued in the guise of art-

science collaboration, rather than as industrial R&D (research and development). 

Abstraction 

Like the previous strategy, abstraction accepts the conventional distinction between 

the field of creative design and technical implementation, but rather than entering into an 

alliance with the technological vanguard (whether conceived in scientific or industrial-

commercial terms), it operates in isolation from them.  Instead of portraying the 

possibility of an avant-garde that combines cultural-aesthetic and technological novelty, 

the sphere of the cultural-aesthetic becomes separated and abstracted from the technical.  

The focus shifts to the game concept as an abstract space that precedes any particular 

form of implementation and that can take shape experimentally without the machinery of 

cutting-edge gaming technology.  This is the approach that Katie Salen and Eric 

Zimmerman (2004) adopt in their innovative account of the field of game design, Rules 

of Play: Game Design Fundamentals.  They open up the potential for an alternative, 

creative and theoretical space of game design by deliberately bracketing issues of 

implementation.  This has considerable value, especially as commercial gaming works 

within such an impoverished conceptual space, but also clearly represents a strategic 

withdrawal from the problems of scale and complexity that the technological dimension 

of contemporary gaming presents. So while strategies of abstraction risk devaluing the 

creative, imaginative dimension of technical implementation, they play a key role in 

delineating avenues of dedicated conceptual-aesthetic interest.  The politically oriented 

web games of Gonzola Frasca provide an example of this approach. September 12, A Toy 

World (Frasca, 2003) employs the model of a simple isometric shooting game to make a 

critical point about the uselessness of addressing the ‘war on terror’ via missiles.  The 

originality of this game lies not in its technical features, nor even in its mode of game 

play, but hinges instead upon a work of conceptual recontextualisation.  It is an 

experiment in game-based political commentary.  The technical and generic remain 

important as ironic points of reference, but the key creative work is abstracted from 

issues of implementation.  



   72

Aggregation 

The sense of effective exclusion from the arena of cutting-edge technological 

development leads to another strategy: the formation of communities of cottage-industry 

level producers who together build alternative game-related graphic engines and the like.  

The Ogre (n.d.), Blender (n.d.) and Xith3D (n.d.) communities provide examples of this 

approach.  While certainly building sophisticated pieces of graphics technology, their 

collaborative work is not positioned as technologically cutting-edge.  Instead the 

emphasis is upon access, upon providing means for small independent producers to 

engage with the esoteric and typically proprietary space of contemporary gaming 

technology.  However, for my purposes, very few of these communities are oriented 

towards the sphere of experimental new media arts.  Rather than questioning the aesthetic 

assumptions of commercial gaming technologies, they are more likely to provide ever so 

slightly pale copies.  Undoubtedly the engines can be put to other uses, but any work of 

fundamental modification is likely to occur in a less collective context.  Paradoxically, 

more relevant communities have a less explicit relation to the realm of gaming.  The 

Processing community (Fry and Reas, 2001, continuing.), as we have seen in the 

previous chapter, focuses on providing artists with access to the creative space of 

programming, supplying technologies and a supportive context for the development of 

experimental projects that explore alternative possibilities for 3D rendering and the like.  

It supplies nothing like a game engine, because the focus is not upon games as such.  The 

Processing environment is much more concerned with enabling artists to engage with 

code (and the aesthetic possibilities of code) at a more fundamental level.  It deliberately 

strips away scale, complexity and encapsulation in order to establish a technical context 

in which genuinely creative questions can be posed.  In its tactical effort to simplify, 

Processing has conceptual affinities with the previous strategy of abstraction. Processing 

aggregates precisely in order to enable individual, cottage-level experimental practice.   

Appropriation 

The popular practices of ‘modding’, ‘mapping’ and hacking bits of commercial 

game technology to produce alternative critical or whimsical pieces of new media art 

provide examples of appropriation.  Gaming engines have been ‘appropriated’ to enable, 



   73

among other things, abstract animation and drawing, data visualization, performance, 

political satire and film-making (machinima) (see the alternative games website, 

selectparks, n.d.).  At times appropriation can represent a deliberate assault on proprietary 

game formats.  Cory Arcangel’s (aka 8-bit Collective or Beige programming ensemble) 

Super Mario Clouds (2003) hacks into the hardware of the Nintendo game cartridge to 

strip away everything in the game but the floating background clouds.  However, 

appropriation can also work in more agreeable harmony with the interests of commercial 

gaming.  Many mainstream game developers allow and encourage efforts at creative 

modification and reconfiguration.  They release source code and mapping tools to 

facilitate grass-roots production of new versions of an original game.  They deliberately 

position their products as emergent cultural and technological phenomena.  The 

interesting implication is that commercial games, as abstract engines and as generic fields 

of parametric possibility, may be said to logically anticipate all their various aesthetic 

appropriations.  The game engine is a protean meta-level space of aesthetic potential that 

imaginatively encompasses all of its specific creative instances – even those that criticize 

and deconstruct it. 

Anachronism 

This strategy, specific to software art, engages closely with technology but in a 

distinct, deliberately ‘out-of-time’ critical-aesthetic manner.  Excluded from – and 

avoiding – the rhetoric of technological novelty, anachronism tinkers, reflects, 

reconstructs and re-imagines aspects of the computational heritage.  It overlaps to some 

extent with strategies of appropriation but places a greater emphasis on ‘original’ coding. 

Sketching a cultural context for software art, Manovich (2006) suggests that 

whereas the postmodern media artist (of the 1970s-1990s) engages in a work of pastiche 

and appropriation, the software artist (of the late 1990s and early 21st century) insists 

upon a creative tabula rasa.  The emphasis shifts to coding things from scratch, avoiding 

both the tools and illusory mimetic rhetoric of contemporary commercial new media 

(animation, games, etc.).  According to Manovich, this represents a return to an earlier 

model of artistic practice – the model of the ‘romantic/modernist’ genius.  Instead of 



   74

drawing cynically upon the available media culture, iconography and creative tools (with 

the sense that there is no viable aesthetic space beyond), the software artist ‘makes 

his/her mark on the world by writing the original code.’ He stresses that ‘[t]his act of 

code writing itself is very important, regardless of what this code actually does at the end’ 

(Manovich, 2006: 211). 

While this work of writing is clearly very significant, I am not convinced that it 

summons a pure terrain of original expression.  Indeed the small qualification that 

Manovich makes – the acknowledgement that this code may be inconsequential, that it 

may not do anything especially significant or novel – suggests a tension and uncertainty 

surrounding the nature of ‘original coding’.  The blank sheet of code is not a simple 

surface.  It is both a veil and an unveiling.  It is both clean (creatively open) and 

thoroughly inscribed.  It floats above a framework of encapsulated processes that extend 

down to the hardware level and is structured as a palimpsest, in which the software artist 

repeats, writes and interrogates the coding tradition.  The software artist makes his/her 

‘original marks’ in the space that is left once technological progress has moved on.  

Originality lies in summoning up a dimension of alterity within this abandoned 

landscape, discovering through self-conscious anachronism (‘non-original’ coding) a 

field of aesthetic possibility.  Whereas the direction of commercial technological 

development is to develop more and more sophisticated layers of abstraction that work to 

make human engagement with computer processes as intuitive and kinaesthetically 

engaging as possible, software art deliberately returns to the earlier, retro model of arcane 

text-based interaction.  As I argue in chapter 4, the GUI (graphic user interface) – and the 

dream of the GUI – disappears to be replaced by the IDE (integrated development 

environment) and the text console.  Software art partakes of anachronism in its very 

concern to structure human-computer interaction in terms of the traditional metaphorics 

of programming. 

The strategy of anachronism then engages creatively with the technological 

tradition by deliberately withdrawing from any attempt to appear at the cutting-edge.  The 

aim is less to project an unseen future than to re-imagine and re-invent the computational 

wheel, to work over the detritus of technological progress searching for points of creative 



   75

intervention.  Anachronism acknowledges the asymmetry between art and the space of 

technological development, but insistently searches for means to reflect upon the 

technical, to open it up to a process of critical-creative enquiry.  In the process, the 

relation to gaming technologies often becomes indirect.  While there are many artists 

producing alternative games, there are significantly more engaged in formal 

experimentation with aspects of 3D drawing and rendering.  This genre of creative 

practice (very prominent in the Processing community) represents a response, at least 

partly, to the conventional illusionistic assumptions that inform the structure of the 

commercial game engine. 

I have described these strategies separately, however it needs to be acknowledged 

that they very often communicate and overlap.  For example, although abstraction, as I 

have defined it, resists engaging with the sphere of technical implementation, it has vital 

importance in terms of describing a dedicated space for conceptual-aesthetic reflection.  

Anachronism, at its best, incorporates a dimension of abstraction; it distills the 

conceptual-aesthetic relevance of specific technical processes rather than simply 

reconstructing them.  Similarly, strategies of appropriation can often blend into strategies 

of ‘original authoring’ (anachronistic re-invention).  Appropriation finds itself opening on 

to an original space while attempts to code from scratch discover a relation to the legacy 

of coding achievement.  Even alliance can reveal other dimensions.  The Blast Theory 

augmented reality projects, despite the rhetoric of avant-garde interdisciplinary accord 

and technological novelty, represent an impressive effort to re-orient aspects of standard 

industrial R&D, to gently appropriate science towards an investigation of critical-poetic 

issues related to virtual identity and emplacement. 

The five strategies represent less a static set of antagonistic options than a 

dialectical constellation.  Together they constitute a field of productive tension.  The key 

tension concerns how the relation between art and techne is conceived, but there are also 

more subtle tensions concerning issues of originality and the tactical relation of art to the 

broader sphere of technological progress. 



   76

Software Art Works 

With this general scheme in place, let us consider how software art reflects on the 

3D game engine.  My interest is in how the various tensions that I have described above 

are played out within a specific new media arts context and in the texture of specific 

software art works.  My initial focus is on two exemplary projects of appropriation 

(resource hacking) – JODI’s SOD (1998) and Untitled Game (2002).  These visionary 

works reconfigure the Doom and Quake engines and anticipate vital paths of 

investigation for contemporary software art.  If SOD and Untitled Game address the 3D 

games engine directly, the relation is more oblique within contemporary software art.  A 

consideration of one of my own recent projects will provide a means of clarifying the 

nature of this relation. 

JODI Game Modifications 

JODI is the Dutch-Belgian duo of Joan Heemskirk and Dirk Paesmans.  Their 

modifications of the Doom and Quake engines are sublimely deconstructive reflections 

on the formal architecture of the first-person shooter.  Although their work involves code-

based intervention, it is clearly not software art that begins with a blank page (the 

imaginary, theatrical scene of a blank page).  It is work that explicitly highlights the 

slippage between postmodern strategies of appropriation and (undecideable) strategies of 

‘original authoring’. 

SOD 

SOD hacks the Doom engine to represent the grim corridors of the original game as 

abstract black and white shapes.  Stripping away the illusion of figurative, textured, 

shaded space and maintaining only minimal perspectival cues, SOD highlights the 

underlying architecture and artificiality of first-person space.  Structural features such as 

the option screens, HUD (heads up display), portals and targeting system gain a new and 

uncanny visibility.  Whereas in ordinary game play, these features support the game play 

and remain subservient to it, here they are foregrounded through deliberate strategies of 

abstraction.  Option screens become lists of semantically void geometric shapes.  The 

HUD displays numerical information about a game space that we can only marginally 



   77

engage with.  Doors (portals) float in space, manifesting forms of transition that 

undermine any naturalistic conception of a doorway and that very evidently involve the 

sudden loading of new spatial data.  The only element that remains largely unchanged 

from the original game is the sound; it provides a residual sense of spatial integrity and 

indicates that despite the obvious work of modification we remain in the Doom engine 

space. 

Untitled Game  

JODI’s deconstructive strategies become even more radical in Untitled Game.  

Working now with the Quake engine, Untitled Game is a set of fourteen game variants 

that explore the coded-ness (or metaphysics) of 3D games.  Gone, on the whole, is any 

lingering concern with maintaining aspects of three-dimensionality.  The focus is on the 

pre-space of conceptual abstraction that shapes the underlying possibility of perceptible 

game space.  This is evident in the title itself which playfully employs the archetypal 

name within abstract art (‘untitled’). 

The names of the individual game variants are also worth considering.  Many 

indicate what appear to be logical ranges within the alphabet – A-X, G-R, M-W – 

however, the ranges clearly overlap and bear no relation to the content of each game.  

Other games are named after command key combinations – Ctrl-9, Ctrl-F6 and Ctrl-

Space – however the games make no apparent use of these combinations.  Only three of 

the games are named in a more ordinary descriptive manner (Arena, Slipgate and Spawn).  

The generally arbitrary character of the names makes the gulf between the sphere of 

language and reference (engine processes and ‘game play’) very explicit. The names are 

indicative of the central critical, deconstructive concern with the disjunction between the 

spheres of coded representation and spatial perception. 

Turning now to a brief analysis of three of the game variants: 

Arena 

Arena (Figure 13) represents a sublime near-zero point of the Quake engine.  There 

is the sound of attacking enemies and the player can click and fire, but 3D space itself has 



   78

been altogether eliminated, leaving only a framed white screen and the HUD.  This 

variant points to the non-space at the heart of 3D simulation and stages it literally, 

visually. 

A-X 

A-X (Figure 14) dispenses with even more features of the original game.  There is 

no longer even the frame or the HUD.  Players encounters a cascade of data; they 

encounter 3D space as the engine (at some relatively high-level) conceives and processes 

it.  This is a particularly clear example of the critical focus on the discontinuity between 

code and the illusion of space. 

Q-L 

Q-L includes recognizable aspects of Quake 3D space, but in a totally vertiginous 

manner.  Instead of predictable visual orientation and motion, the camera spins wildly out 

of control and none of the usual interactive controls work as expected.  This game variant 

unsettles the sense of continuous 3D space and confident first-person motion through 

space.  It suggests that spatial continuity and first-person interaction are only a fragile 

mathematical fiction. 

The exit screen for Q-L (Figure 15) indicates a characteristic deconstructive 

strategy employed in Untitled Game.  Instead of the usual set of options - ‘New Game’, 

‘Single Player’, ‘Exit’, etc. – the user encounters a jumbled set of letters that are 

semantically meaningless but that adhere to the formal layout of the ordinary options 

screen.  Anyone with experience of Quake can infer that ‘PTJS’ signals ‘EXIT’ because 

it is four letters long and positioned where ‘EXIT’ would normally be. 

This strategy of maintaining formal identity while simultaneously engaging in a 

work of semantic scrambling is a key characteristic of the JODI modifications.  However 

much they deconstruct the Doom and Quake engines, they also remain true to aspects of 

their underlying structure.  JODI’s work obtains its critical imaginative (and political) 

force precisely inasmuch as it develops a tension between the formal mechanics (and 

cultural imaginary) of game engines and a more open space of creative possibility.  Their 



   79

work represents a limit form of game modification.  While remaining within the orbit of 

Doom and Quake, they signal concerns that extend beyond the field of 3D games as such.  

The Untitled Game variants, for example, are very clearly not games.  They are 

unplayable critical interventions that focus upon the underlying logic of spatial 

representation – upon the engine as a conceptual system rather than the structure and 

articulation of game-play.  As much as they play upon the formal features and 

iconography of Quake, they also manifest a fundamental and more general concern with 

the abstract logic of code.  Working at the limits of appropriation, they indicate the 

necessity of other approaches; ones that not only modify engines but also imagine them 

differently.  In this sense the JODI modifications anticipate contemporary strands within 

software art that focus on the creation of alternative, typically abstract, graphic engines. 

Contemporary Experiments 

Trawling through the Processing forums it is possible to find many posts such as 

the following: 

Hello, As my brain is starting to smoke, and google cant seem to give me an 

understandable answer, turn to you for a possible solution.  my problem is as 

follows: I have a point defined in polar coordinates (Zrotation, Yrotation and 

distance), now i need to find out what the absolute rotation is, by that i mean a 

single rotation around a defined axis that returns the same point in space.  I've 

been speculating that this angle is sqrt(Zrotation^2 + Yrotation^2) but i havent 

been able to verify this. Is there anyone out here that have a better understanding 

of this than me? also i would like to know how to calculate the axis of this 

rotation.  hope my explanation is understandable: Regards, Henrik, IP Logged 

(Fry and Reas, 2001, continuing)) 

Along with Henrik, many software artists are increasingly absorbed in the technical 

intricacies of 3D graphics.  A huge amount of energy is devoted to solving entirely trivial 

mathematical and programming problems, ones that have been solved innumerable times 

in the past (and much better).  To code with this sense of larger irrelevance, with this 

awareness of stupidity and anachronism – this is a substantial part of what it means to be 



   80

a contemporary software artist.  Typically there is no explicit aesthetic rationale; 

ostensibly it is just about tinkering around with the mathematical and technical 

infrastructure of 3D graphics. However, this may actually indicate the key point; this 

process of tinkering is about bringing the problem of technological complexity down to a 

human scale.  Each specific technical problem is tantalizingly soluble at a local, human 

level.  In this sense, each question projects a horizon of distant but attainable technical 

competence.  The legible hope is that artists can obtain the relevant skills and 

understanding to direct code in their own aesthetic interests rather than inevitably be 

swept along by existing technical regimes and aesthetic assumptions. 

The technological infrastructure of the 3D games engine provides a crucial 

reference point for this work of contemporary experimental practice.  The explosion of 

sophisticated graphics technologies over the past two decades is closely linked to the 

increasing economic and cultural sway of real-time 3D games.  OpenGL, DirectX, 

superbly fast graphics cards – all bear the imprint of the commercial gaming industry.  If 

software artists now have access to aspects of this technology it is substantially due to its 

popularization within games. The JOGL (Java bindings to Open GL) API, which is vital 

to Processing and more general Java-based software arts 3D experimentation, provides a 

clear example of this debt.  Although the API can certainly be applied in contexts that 

extend beyond games, it is nonetheless the product of the Game Technology Group at 

Sun Microsystems and can be found at the java.net site by following the following set of 

hierarchical links; projects, games, games-core, jogl (JOGL, n.d.).  While software art 

makes use of this technological infrastructure, gaming itself, as a cultural form, is often 

only obliquely acknowledged.  Whereas the JODI projects explicitly confront the culture 

and aesthetics of commercial gaming, software art imagines a fragile space of autonomy.  

Gaming is positioned, in a contradictory fashion, as both a necessary foundation and an 

extraneous imposition. 

Anachronism (Again)  

To illustrate this tension within the self-identity of software art, its sense of relation 

and non-relation to the larger technological and cultural infrastructure, I will consider the 



   81

development of one of my own recent software art projects.  This project is entitled 

Anachronism in order to highlight the awkward relation to the means of production that is 

constitutive of software art.  I am focusing on my own project here not with a sense of its 

aesthetic importance but because I can provide an under-the-hood explanation of how the 

work is informed by a relation to the 3D games engine. 

Anachronism began as a kind of perverse Java 2D sketching program.  The idea 

was to eliminate all sense of an analogue relation to manual drawing.  The user would 

quite literally draw with numbers; defining shapes by writing a series of x and y 

coordinates (and control points for Bezier curves) to a text file.  An additional 

configuration file would describe sprites, motion and rendering styles.  It is worth noting 

that although none of this engaged closely with the possibility of the 3D games engine, 

many of the fundamental concepts informing the structure of this experimental drawing 

program have their basis in gaming technologies.  The whole conception of a ‘sprite’ as a 

screen instance of a graphic data structure stems from gaming, initially as an aspect of 

graphics hardware and then as a software abstraction. 

Having created a version of this initial – deliberately contrary – drawing program, I 

became more interested in the creative possibilities of code drawing itself, and especially 

in the potential to draw with animated 3D shapes.  It quickly became evident that it was 

impossibly slow and difficult to manually define 3D shapes, so I switched to the 

algorithmic definition of simple shapes and the parsing and loading of Alias Wavefront 

‘obj’ files.  The latter represent shapes as lists of vertices and polygonal faces and can be 

created in a variety of 3D modeling applications.  My aesthetic rationale was to explore 

alternative, non-figurative means of 3D rendering.  This represents a characteristic 

gesture of resistance to the predominant focus upon visual realism within commercial 

games and animation.  It follows the trajectories suggested by the JODI projects, but 

would seem to articulate them in a less politically pointed and deconstructive manner.  If 

my first concept playfully juxtaposes code and the ideology of intuitive aesthetic 

perception, my second encapsulates the dimension of code drawing in order to elaborate a 

wider space of visual possibility. 



   82

However there are also more subtle implications.  The shift to 3D prompted a more 

explicit concern with the graphic-related structure of the 3D games engine.  My interest 

was in stripping back the graphic operations to a bare minimum.  There would be no 

back-face culling, no painter’s algorithms, no binary partition trees, it would simply be 

sets of polygonal objects that could be animated and drawn as points, lines or filled 

shapes.  I actually avoided OpenGL (JOGL) and worked with simple Java 2D drawing 

methods.  This deliberate work of bracketing core areas of functionality was the key to 

opening up original creative possibilities.  Suddenly in the interstices of the conventional 

engine (here re-written from scratch) there was the potential to explore something other 

than the simulation of space; something that entered into to dialogue with traditional 

drawing, that was concerned with the deliberate fashioning of shapes, iterative patterns 

and conceptual series (Figure 16 ). 

 
Fig. 5: Brogan Bunt, Anachronism (2006) 

The creative work emerges then in the friction between the conventions of the 3D 

graphics engine and the experimental agendas of software art.  Anachronism is interesting 

precisely in terms of the tensions that structure its autonomy and originality.  However, 

there is the difficulty that this underlying dynamic may not be directly evident in the 

work.  It figures as a background and is articulated obliquely.  Perhaps the title makes the 

point, but the question remains a vital one for software art: how can the concepts and 



   83

contextual constellations that inform the creative work of programming become lucid at 

the level of the perceptible work? 

Conclusion 

This chapter has attempted to describe the awkward relation between contemporary 

software art and the 3D games engine.  It has considered the broad dilemmas of scale, 

encapsulation and conventional aesthetics that the 3D games engine presents as well as 

suggesting a range of specific strategic responses.  My key interest has been in the 

ambivalent character of strategies of anachronism.  Anachronism appears both original 

and non-original.  It both imagines prospects of creative autonomy and acknowledges 

relations of dependence and dialectical differentiation.  If there is a problem in all of this, 

it is less in terms of issues of logical contradiction than in the all too common failure to 

tease out the conceptual implications of anachronistic practice.  There is a crucial need 

for the critical character of ‘technological tinkering’ to be elaborated within software art.  

Processes of interrogation that may be apparent to the programmer need not be apparent 

to the user/viewer.  If experimental graphical software art is to avoid being interpreted as 

apolitical and blandly decorative, then it needs to discover ways to articulate underlying 

conceptual concerns (and the politics of its problematic creative positioning) more 

explicitly. 



   84



   85

Chapter 6 
________________________________________________________________________ 

Software Art and the Instrumental 

 
Introduction 

The second dilemma of software art (see chapter 4) relates to the demand that code 

become visible, that it abandon its ‘natural’ tendencies to hide and proceed silently – that 

it become instead reflectively manifest.  However, code insistently, structurally 

withdraws as part of its overall instrumental orientation.  In resisting the invisibility of 

code, software art resists the instrumental (functional and blindly functioning) character 

of conventional software.  My aim in this chapter is to question this rejection of the 

instrumental – to suggest an intimate relation between the aesthetics of software and its 

functional character.  However, this intimacy does not take convenient and conventional 

aesthetic shape.  It appears more as a difficulty of delineating the limits of the work, of 

distinguishing between that which is merely a technical pre-condition for the work and 

that which is properly aesthetically constituted. 

This issue takes shape for me in relation to an uncertainty within my own software 

art practice.  Many of my projects have required the creation of software tools and 

generic playback engines that facilitate, respectively, the production and display of the 

ostensible finished work.  I have always been uncomfortable about positioning these 

software contrivances as a form of secondary technical scaffolding.  Yet how are they to 

appear differently?  How are they to obtain aesthetic shape?  Here it is less a matter of 

making them visible or audible than of demonstrating their integral place within the 

overall conceptualization and articulation of the work.  The exhibited work takes shape as 

a space of specific instanciation that is vitally enabled by a linked realm of abstract-

generic and instrumental design and operation. I will focus on a specific example of my 

work in this chapter, Cropper_Propper_Gridder. It is a work is concerned with the 

representation of time and the pragmatics of enabling a decomposed and recomposed 

temporal display.  I describe Cropper_Propper_Gridder as a software art work, but with 



   86

some hesitation.  The work lacks an adequate aesthetic manifestation – either as code or 

as visible interface.  If the work is of any interest, it is because it pursues a poetic idea 

through instrumental means – or better, it struggles to discover a potential for poetry in 

the aesthetic estrangement of software.  While software art conventionally resists the 

instrumental character of software – struggling to make software aesthetically, 

reflectively appear – Cropper_Propper_Gridder deliberately engages with the aesthetic 

aporia of instrumental functioning. 

The Problem of the Instrumental 

Within the tradition of critical theory, the notion of the instrumental is associated 

with a specifically modern mode of rationality that is oriented towards the purposive 

accomplishment of tasks, in the process deliberately bracketing questions of human 

value.  Instrumental rationality addresses issues of efficiency and running, ignoring wider 

ethical, political and cultural concerns.  The sociologist Max Weber (1946) argues that 

this mode of reason takes characteristic form in the mechanisms of modern bureaucratic 

administration and industrial capitalism.  This broadly social conception of the 

instrumental is predicated on a more fundamental notion of the nature of an instrument.  

An instrument is a device that moves but lacks free being.  It produces results but without 

any awareness of cause or result.  It functions unreflectively. It proceeds blindly.  In this 

sense, despite its status as a technical contrivance, an instrument – in its motion, in its 

running – comes to resemble the deterministic processes of nature.  At the very outset of 

his discussion of art in his 1790 Critique of Judgement, Immanuel Kant explains that ‘Art 

is distinguished from nature as making (facere) is from acting or operating in general 

(agere); and the product of the result of the former is distinguished from the latter as 

work (opus) from operation (effectus)’ (Kant, 1980:  523).  In the same manner, an 

instrument can be regarded as performing operations which produce effects rather than 

performing actions which shape (aesthetic) works.  This indicates the obvious dilemmas 

that confront any attempt to chart an association between the instrumental and the 

aesthetic. Conceived as intermediary, mechanical and unreflective, the instrumental 

appears directly opposed to the finality, freedom and reflective nature of art. 



   87

How, in this context, can software, as a discursive space that is substantially shaped 

by the logic of the factory assembly line (Gere, 2002: 17-46; Manovich, 2005: 5), and 

that is centrally concerned with issues of abstraction, procedure and function, possibly be 

aesthetic?  How is software art to conceive its relation to the instrumental dimension of 

software?  As a basis for addressing these questions, it is worth briefly sketching a more 

general context of debate concerning the relation between the instrumental and the 

aesthetic. 

Art and Engineering 

In 1920 the Russian Constructivist artist, Vladimir Tatlin, produced a proposal for 

the Monument to the Third International (Tatlin, 1920). He envisaged a 400 metre high 

steel and glass tower that incorporated a dynamic spiral structure and rotating internal 

rooms.  It was utopian art adopting the guise of an architectural plan and was criticized 

for its impracticality by revolutionary artists and politicians alike.  Another Constructivist 

artist, Gabo, cautioned Tatlin to ‘either create functional houses and bridges or create 

pure art, not both’ (Wikipedia, n.d.). The work was condemned for confusing two distinct 

languages and modes of making: art and engineering.  Furthermore it transgressed the 

conventional boundaries between the aesthetic ‘end-in-itself’ and the sphere of useful 

things.  These ‘flaws’ are also the basis for its lasting significance as an icon of avant-

garde art.  The monument posed the essential problem concerning art’s relation to 

modern forms of making and, more generally, art’s relation to industrial modernity. 

Two broad historical strategies emerge in relation to this challenge.  On the one 

side there is the model supplied by Dada of incorporating technology and technological 

forms of making as a means of waging a multi-pronged assault on autonomous art, 

bourgeois humanism and instrumental rationality.  This approach takes archetypal form 

in Marcel Duchamp’s Large Glass – The Bride Stripped Bare by Her Bachelors, Even 

(1915-23), which provides an ironic take on our pleasant fictions of love, free will and 

organic, human difference by representing human courtship and erotic coupling in 

mechanical terms.  In a parodic reference to the history of industrial machinery, the 

processes proceed upwards from steam, to internal combustion engine, to electricity 

(Duchamp, 1973: 39).  This is not, of course, a working machine.  It is a playful, 



   88

subversive, metaphorical apparatus.  It functions as a piece of critical commentary rather 

than as a literal instrumental device.  A crucial distance then is maintained between art 

and engineering so that art, however fractured, however affected by industrial modernity, 

can shape a properly aesthetic space of critique. 

The other strategy, evident especially in Constructivism and the Bauhaus, strives 

towards a unity of art and industry.  It projects an integration of the aesthetic (as mode of 

formal appearance) and the instrumental (as sphere of functional, mass-produced 

products).  Art abandons its reflective autonomy to enter into the texture of practical 

things.  While crucial as a critique both of art and alienated labour (Burger, 1984; 

Huyssen, 1986: 12), this strategy runs the risk of providing an aesthetic sheen for forces 

that actually undermine the potential of art to suggest alternative social and imaginative 

possibilities.  Furthermore, this effort to draw a close association between the aesthetic 

and the instrumental is much easier to manage with simple, everyday things – coffee 

cups, tables, light fittings, etc. – in which form and function share a common immanent 

material being.  Software programming is harder to conceive in these terms because it 

institutes a separation between the domain of instrumental instructions and the visible 

interface.  The former indicates a space of symbolic abstraction and functioning that is 

hidden from view – that is not instantly coextensive with the terrain of user interaction.  

Although authors such as Donald Knuth (1973 – 1998) portray programming as a 

practical art which can be regarded aesthetically in terms of values such as economy and 

elegance, this makes the aesthetics of code only accessible to programmers and 

represents a return, as Cramer argues, to a very traditional neo-classical aesthetic space. 

In short, neither critical nor integrative strategies genuinely engage with the 

instrumental in its non-aesthetic distance.  Critical avant-garde art resists literal 

instrumental functioning while modernist design works to aestheticize the functional.  

Neither provides an adequate means of conceiving the field of software programming, 

which refuses to adopt a conventional aesthetic form, which is directed elsewhere, which 

shapes instructions rather than an easily critical or conciliatory work.  If there is anything 

unique about the situation of software art it lies precisely in this search for an aesthetic 



   89

rationale without the possibility of any recourse to the non-instrumental or the 

consolation of immanent form. 

A Problematic Definition 

The jury for the 2002 Moscow Read_Me 1.2 festival offer an influential definition 

of software art: 

We consider software art to be art whose material is algorithmic instruction code 

and/or which addresses cultural concepts of software. (Read_Me 1.2 festival jury, 

2002) 

Although intended to be inclusive, this definition works to obscure the key issue of the 

relation to the instrumental.  Instead it focuses on distinguishing two strands of software 

art practice – formally oriented code-based experimentation and culturally oriented 

software critique.  The formalist option is expressed in terms that recall the language of 

high modernism; the focus is upon defining the material essence of the software medium, 

which here takes the form of ‘algorithmic instruction code.’  In this manner, a complex 

cultural assemblage – a language and a field of discourse – is reduced to the status of a 

simple material, like paint or clay.  This reduction of code to the simplicity of an 

aesthetically malleable material is what enables formalist software art to be represented 

as a purely conceptual meditation on aspects of system without any integral concern with 

dimensions of culture.  However, a close engagement with the medium of code can have 

other implications.  It can have a cultural dimension.  It can represent an engagement 

with a specifically culturally determined discursive space.  More particularly, it can 

represent an interrogation of the instrumental language and strategies of conventional 

software.  But unfortunately, by positioning code as a base aesthetic matter, formalism 

loses sight of this possibility.  It is left to the other side of the definition to engage with 

software as a cultural phenomenon. 

But correspondingly, although the culturalist option ‘addresses cultural concepts of 

software’ it seems to lack a specific point of discursive purchase.  How is the nature of 

this mode of address to be described?  Is this critique spoken in the language of code as 



   90

actual functioning software or is it expressed in other terms?  There is a need to explain 

how critical software art relates to the layer of instrumental, non-reflective language that 

provides the basis for its operations.  There is a need to think through the engagement 

with the material language of code.  In this sense, the cultural critique of software cannot 

be conceived apart from the apparently formalist option.  The distinction between 

formalist and cultural tendencies obscures this vital issue.  

If this bifurcated notion of software art is ultimately disabling, working to 

impoverish both formal experimentation and cultural critique, it is because it 

misconceives the field in terms of a tension between contrasting aesthetic tendencies 

rather than in terms of a more constitutive tension between art and the non-aesthetic, 

instrumental dimension of software. 

Software Becoming Art 

The notion of software art appears at one level as a transgression of ordinary 

aesthetic proprieties.  In a traditional avant-garde spirit, it seems to unsettle the 

complacent autonomy of art, insisting that art engage with a space of non-art – a realm of 

engineering and technical implementation.  Yet at another level it proceeds in an opposite 

fashion.  Rather than genuinely risking a relation to the alterity of another cultural and 

discursive space, it conceives software in terms of art.  It dialectically subsumes those 

aspects of software that are aesthetically useful and digestible, while discarding 

everything else. This is evident inasmuch as the specific characteristics of software art 

correspond to a very conventional aesthetic scheme.  It is worth briefly outlining the 

contours of this scheme in terms of Kant’s classical model of aesthetics and fine art. 

According to Kant (1980), aesthetics denotes a realm of non-instrumental 

engagement with things.  It is a sensuously enabled mode of reflective judgement that 

rises above the dimension of sense to enter into dialogue with the a priori space of 

conceptual understanding (Eagleton, 1990: 85; Kant, 1980: 484).  The experience of 

beauty, for instance, relates to the recognition of order in the symmetrical forms of nature 

– mineral and organic forms that are not themselves conceptual but that nonetheless 

reveal a systematic, formal logic (pattern, unity and harmony) – an order that is 



   91

apprehended through the senses but that instantly summons an awareness of the universal 

and the metaphysical (Kant, 1980: 493).  Fine art, as a specific experience of the 

beautiful, manifests a purposiveness without purpose, a disinterested, non-utilitarian 

demonstration of the felt rightness of the conceptual (Kant, 1980: 524-5).  It strips real 

objects of their ordinary reality, their contextual significance as objects that are 

practically desired, manipulated and used.  Art objects suspend the dimension of 

conventional instrumental utility in order to attain a higher conceptual utility as signs of 

an ultimate reconciliation of human faculties.  Their lack of instrumental utility takes the 

form of an organic finality, a dimension of formal coherence without goal.  The 

production of art depends upon genius; an ‘innate mental aptitude (ingenium) through 

which nature gives the rule to art’ (Kant, 1980: 525).  Unlike instrumental craft, which is 

the product of practical, formulaic labour, fine art is conceived as a generative expression 

of the soul as a protean ‘second nature’ (Kant, 1980: 528).  Kant’s aesthetic scheme is 

representative of a classical Enlightenment conception of art as non-instrumental, final, 

reflective and the product of genius. 

Now, without trying to suggest that contemporary conceptions of software art are 

strictly-speaking Kantian, there are curious affinities linked to how issues of instrumental 

function, reflection and artistic subjectivity are conceived. 

Instrumental Function 

Software art characteristically resists the notion of software as a tool.  The jury for 

the 2001 Berlin Transmediale.01 artistic software award suggest that ‘[e]very program 

that pretends to be a tool disguises itself’.  Here they are referring to the fiction of a 

passive tool – of something that is altogether controlled by human beings and subservient 

to their interests, but it spills over into a more general rejection of pragmatic, instrumental 

software.  There is a strong preference for work that undermines utility and suspends 

ordinary functioning.  Adrien Ward’s Signwave Auto-Illustrator (Ward, 2001) provides 

the iconic example, although it is a work that represents, in my view, an ambivalent 

relation to the instrumental.  In its adherence to the interface conventions of commercial 

creative software, Auto-Illustrator at once deconstructs and delights in the notion of 



   92

software as tool.  While the deconstructive orientation is emphasized, the manner in 

which the work draws inspiration from the conventional language of tool-based software 

escapes explicit attention. 

Software art’s suspicion of tools connects to the classical aesthetic bracketing of the 

instrumental, although clearly the aim is less to determine a pure space of disinterested 

perception than to critically respond to the dominant models of commercial application 

software.  Yet it seems to me that the rejection of the notion of the tool – as well as the 

rejection of the tool’s effort to disguise itself – creates fundamental problems for software 

art.  Even if a piece of software is not ostensibly a tool, it must speak the language of 

tools.  It is devised as a system, an apparatus.  It functions.  As languages and discursive 

forms, programming languages bear the necessary imprint of the industrial forces that 

have shaped them.  The concept of a tool is implicit within programming structure – in 

the notion of an algorithm that processes data, an object that performs a specific 

(encapsulated) task and a procedure that runs more or less efficiently.  In bracketing all of 

this, in trying to think algorithm and procedure beyond the instrumental space of tools 

and tool functioning, software abandons a crucial point of aesthetic purchase.  The goal in 

my view is not to resist the notion of the tool, but to engage with issues of abstraction, 

disguise and efficiency, to somehow re-imagine the aesthetic in an alien terrain. 

There are already models from within software – works that may not be primarily 

aesthetically constituted but that have aesthetic, poetic implications, that reveal the 

potential for an instrumental imaginary.  Just to briefly mention three: Ivan Sutherland’s 

1962 Sketchpad, which was not only the first graphic drawing program but which, more 

particularly, as Allen Kay argues (2003), re-invents drawing in terms of the conceptual 

structures of object-oriented programming; Richard Stallman’s Emacs (1975) which is a 

bizarre jalopy-style software, defiantly resisting task specialisation and ordinary 

boundaries between work and play; and finally even the modern integrated development 

environment, Eclipse (2004), which is utterly generically conceived – which can be 

radically reconfigured to accomplish different programming tasks and which appears as a 

kind of meta-tool, a tool for creating tools.  For me these software tools are as much a 



   93

source of inspiration as is work that is specifically (safely, neatly, clearly) positioned as 

software art. 

Reflection 

The primary motivation of software art is to encourage reflection upon underlying 

programmatic software processes. This notion of reflection is hardly the affirmative, 

grandly reconciling reflection of Kantian aesthetics – it is often, for instance, critical and 

deconstructive, but it nonetheless privileges code that does more than simply operate – 

that somehow finds the means to reflect upon its own operations.  Without wishing to 

altogether question this orientation towards reflection, it seems to me that the issue is 

more complex.  Programming entails relations that extend beyond the fantasy of visibility 

and self-collected reflection. 

 This is evident at the very outset of modern computer science in Alan Turing’s 

model of computation (Turing, 1995; Feynman, 1996).  If Turing chooses to compute, it 

is because computation is mechanical, it proceeds stupidly step by step.  Computer 

programs may represent brilliant efforts of reflective analysis, abstraction and design, but 

program operations at the atomic level of specific digital events are utterly simple and 

unambiguous.  Reflection constitutes a problem for underlying digital processes, a 

quandary that suspends their functioning.  It is worth examining the play of reflection and 

machine unconsciousness in Turing’s famous ‘halting problem’.  Turing reflects upon the 

mechanism of computation, upon its procedural logic.  He sets computation a reflective 

trap.  The universal machine is programmed to halt if it is stuck and proceed if it is not.  

Then, in a crucial reflective step, Turing makes the computer process its own code.  Now, 

it seems, it must halt if it proceeds and proceed if it halts.  Unable to decide whether to 

proceed or to halt, the mechanism comes undone precisely through a motion of reflection. 

The jury for the Transmediale.01 festival suggests that the fascination of computer 

programming depends precisely upon code’s capacity to function, the passage it makes 

from a reflective conceptual state to one of actual machine processing: 



   94

Perhaps the most fascinating aspect of computing is that code – whether displayed 

as text or as binary numbers – can be machine executable, that an innocuous piece 

of writing may upset, reprogram, crash the system. (Transmediale.01 Media Arts 

festival jury, 2001) 

Turing’s example suggests that this necessitates a relation of reflection to something 

other than reflection – to a space of blind motion that functions only on condition that it 

does not reflect.  Programming demands a close engagement with this other space.  It 

opens up a vital relation to the blindness of machine processing.  The aesthetics of code is 

as much about the unseen, the hidden and the disguised as it is about the reflective and 

the visible.  In this context, strategies of abstraction and encapsulation are also relevant – 

as indeed are all of the strategies that structure programming as a work of inscribing 

layers and guises above an unreflective foundation.  So while software art expresses a 

fascination with the executable character of code, it withdraws from the thinking of this 

space to the extent that it insists upon a purely reflective conception of software art.  

 

Artistic Subjectivity 

Software art associates the aesthetic character of code with a dimension of personal 

inflection.  Cramer and Gabriel argue that: 

[C]oding is a highly personal activity.  Code can be diaries, poetic, obscure, ironic 

or disruptive, defunct or impossible, it can simulate and disguise, it has rhetoric 

and style, it can be an attitude. (Cramer and Gabriel, 2001: 3) 

This is hardly the concept of aesthetic genius (which is actually much more ambiguous, 

which actually deeply problematizes issues of agency) but it places a similar emphasis 

upon the expressive potential of code.  Code that is impersonal and formulaic appears 

less aesthetic.  In my view, however, code is inevitably formulaic.  There are all kinds of 

standard idioms, patterns and stylistic conventions.  It is less by resisting these and 

affirming some notion of personal, differentiated expression that code becomes aesthetic, 

than by pursuing the formulaic closely and intimately.  Rather than asserting subjectivity, 



   95

it is a matter of finding it elsewhere, of re-inscribing it at a distance.  Code is only 

personally inflected within the texture and through the agency of impersonal formula. 

There is a vital need then to consider the instrumental character of software beyond 

the conventional framework of Enlightenment aesthetics.  As Derrida (1976) argues, the 

tool is never a mere subservient vessel but always appears as a force that intimately 

affects and undermines the notion of human agency.  Writing appears as an aid to human 

memory but actually destabilizes human memory and renders it in other, alien terms.  Re-

conceiving the instrumental character of the software tool depends upon considering the 

nature of a tool more closely, rather than turning away with a sense of traditional 

aesthetic disdain. 

Heidegger – Technological Revealing 

In his famous 1953 article, ‘On the Question Concerning Technology’, Heidegger 

begins by suggesting that ‘the essence of technology is nothing technological’ 

(Heidegger, 1978: 287).  He is determined to reinterpret technology, to discover within it 

another meaning.  Heidegger questions the common sense view of technology as a 

neutral means to an end and as an expression of human agency.  He describes this view as 

‘the instrumental and anthropological definition of technology’ (Heidegger, 1978: 288).  

This would seem to represent a similar rejection of human instrumental agency that we 

find within software art, yet the notion of the instrumental makes a strange return as the 

argument proceeds – a return in which the notion of a subservient means is thought apart 

from the necessity of original agency or determined end. 

Re-examining the nature of technological making as traditionally conceived (in the 

Aristotelian conception of techne (Aristotle, c. 350BC)), Heidegger finds that it involves 

a motion of “bringing-forth” that is aligned with poesis (Heidegger, 1978: 293).  It also 

summons a more complex sense of causality which eludes the modern sense of means-

end rationality and engages with processes of revealing – the manifestation of truth 

(Heidegger, 1978: 294).  A classic instance is evident, perhaps, in Michelangelo’s 

conception of uncovering figures in marble; he less makes the figure (ex nihilo) than 

releases and reveals the inherent potential of the figure from within the marble.  In this 



   96

sense the artist lacks absolute agency, appearing instead as a mechanism for an overall 

process of revealing (he is caught up in the mystery of Being). 

Heidegger argues that while this model appears applicable to traditional handicraft, 

modern technology radically changes things.  Rather than adapting to implicit nature – 

tending it and gently bringing it forth – modern technology exploits materials; it extracts 

from them and transforms them.  Materials become bare functional resources that are 

never revealed as such but that are instead stored up, ordered and operationalized 

(Heidegger, 1978: 298).  Traditional processes permit the object its distinct appearance, 

autonomy and finality, whereas modern modes of technological manufacturing enable no 

space of rest or of contemplative existence: 

Unlocking, transforming, storing, distributing, and switching about are ways of 

revealing.  But the revealing never simply comes to an end. (Heidegger, 1978: 

298) 

This operational system affects not only natural materials and the technological devices 

but also the human beings that ‘run’ them.  All elements become regulated components 

within an overall mechanical constellation; none of them can ever be revealed in 

themselves – instead they constantly point elsewhere and only gain meaning in their 

systematic (differential) functioning. 

Surprisingly, rather than altogether rejecting this prospect of systemic displacement 

and human alienation, Heidegger discovers within it a sense of strange hope.  This hope 

is linked precisely to the instrumental character of modern technology; specifically to the 

ambiguous relation it opens up between revealing and hiding.  Rather than directly, un-

problematically, displaying Being in a natural and organic fashion (as evident in the 

model of traditional handicraft), modern technology shapes a blindness, a layering, a 

system of guises.  For Heidegger this has the potential to provide access to a deeper layer 

of revealing – the truth, precisely, that truth can never appear as such, that it is inevitably 

in disguise – dissembling and adopting the form of copy, metaphor and sign. Heidegger 

argues that humanity ‘keeps watch the unconcealment – and with it, from the first, the 



   97

concealment – of all coming to being on this earth’ (Heidegger, 1978: 313).  If ‘the 

essence of technology is nothing technological’, it is because it is actually about the 

ultimate mystery of being and revealing: 

The question concerning technology is the question concerning the constellation 

in which revealing and concealing, in which the coming to presence of truth 

comes to pass.  (Heidegger, 1978: 315) 

If this alternative thinking of technology appears dangerous it is because it risks 

becoming lost in the tissue of concealment – truth is no longer co-extensive with direct, 

lucid appearance.  It passes away from itself and beyond the control of self-collected, 

critical, human consciousness.  The anthropocentric dream of human control and mastery 

is abandoned in order to conceive technology in radical instrumental terms as an opening 

and a displacement.  Hence, for Heidegger, the importance of art as both a species of 

techne and as a means of maintaining a human, reflective element: 

[E]ssential reflection on technology and decisive confrontation with it must 

happen in a realm that is, on the one hand, akin to the essence of technology and, 

on the other, fundamentally different from it. (Heidegger, 1978: 317) 

However, art can only perform this task of maintaining reflection within the space of 

semblance and loss if it takes technology seriously, if it ‘does not shut its eyes to the 

constellation of truth concerning which we are questioning’ (Heidegger, 1978: 317).  The 

catch, however, is that this also necessitates a questioning of the nature of art as critique:  

‘the more questioningly we ponder the essence of technology, the more mysterious the 

essence of art becomes’ (Heidegger, 1978: 317).  This mystery takes shape precisely as 

the risking of critique – art itself appears as a passage away from truth as simple 

revealing.  This is not a consequence of its inevitable opposition to technology (the 

conventional romantic aesthetic attitude that contrasts irrational, sensible-material art to 

the rational abstraction of technology), but instead arises from a fundamental engagement 

with the problem of technology.  The mystery of art lies in its participation within the 

problematic of the instrumental. 



   98

Heidegger’s conception of technology has clear relevance to the nature of software 

which is characterized by an enframed writing, a motion of functioning without human 

agency and by endless processes of structural hiding (abstraction and encapsulation).  Art 

cannot resist these processes by simply projecting a naïve opposite.  There is instead a 

need to insert itself within software, to partake of its processes, to follow its complex 

system of layering and dissembling. 

Plato – Inspiration and Mimesis 

Heidegger’s perspective emerges as a creative response to a specifically modern 

concern, yet there are also ancient models for this view.  It is easy to imagine an ancient 

unity of techne and poesis that is split apart within modernity, yet this sense of division is 

also apparent within the ancient world.  Plato, for instance, writing around the same time 

as Aristotle, is adamant that techne and poesis are fundamentally opposed (Plato, c. 380 

BC).  Whereas Aristotle (1965), in his On the Art of Poetry, positions (dramatic) poeisis 

as a domain of conceptually-guided skill, Plato, in his dialogue Ion (c. 380BC), casts 

poesis as form of sympathetic magic, of intoxication.  The discussion between Socrates 

and the Homeric rhapsodist Ion sets out to establish that the latter rhapsodizes not 

through the mechanism of clear aesthetic precepts and skills but through the agency of 

divine inspiration: 

For all good poets, epic as well as lyric, compose their beautiful poems not by art, 

but because they are inspired and possessed.  And as the Corybantian revelers 

when they dance are not in their right mind, so the lyric poets are not in their mind 

when they are composing their beautiful strains: but when falling under the power 

of music and metre they are inspired and possessed. (Plato, c. 380 BC: 5) 

For my purposes, what is interesting here is that inspiration renders the artist an 

instrument.  They are no longer in control, they can no longer entirely reflect upon, or 

claim essential priority for, the processes in which they are involved.  They are caught up 

in operations that exceed them.  Plato describes inspiration in terms in terms of the 

metaphor of a magnet: 



   99

This stone not only attracts iron rings, but also imparts to them a similar power of 

attracting other rings; and sometimes you may see a number of pieces of iron and 

rings suspended from one another so as to form quite a long chain: and all of them 

derive their powers of suspension from the original stone.  In like manner the 

Muse first of all inspires men herself; and from these inspired persons a chain of 

other persons is suspended, who take the inspiration. (Plato, c. 380 BC: 5) 

The metaphor suggests a chain of inspiration that takes shape as a set of mediated 

relations.  The ‘original stone’ can not itself be seen – it passes away from itself in order 

to manifest its attractive force.  Each iron ring – Homer, the Homeric rhapsodist Ion and 

the audience – is linked together instrumentally as an ordered sequence and as a chain of 

unconscious attraction.  However the chain also gives rise to apparitions, because 

inspiration becomes manifest through appearances, through mimetic guises.  If Plato 

(1955) ultimately expels the poets from his ideal republic, it is not only because they 

encourage dimensions of irrational and emotional excess but because they produce 

beguiling appearances that are a ‘third remove’ (Plato, 1955: 425) from truth.  Genuine 

truth has its home in the sphere of abstract, mathematical form, whereas human beings 

live in the world of appearances (dark and shadowy and yet visible), and artists create 

appearances of appearances.  The fundamental paradox is that inspiration has its basis in 

the revelatory experience of music and metre (which traces intimate links to the realm of 

ideal truth), but instead of producing truth it gives rise to falsehoods.  Just like technology 

(conceived in Heidegger’s terms) mimetic art renders revealing as concealing. 

We find then that Plato’s rejection of the mechanism of art (techne) only enables its 

more thorough grounding within art – not as conceptually guided, skill-based practice, 

but as the instrumental character of techne which here informs the nature of poetic 

inspiration and mimetic form; taking shape as the suspension of self-collected human 

agency and in systems of dissembling that chart an undecidable relation between the 

revealing and concealing of truth. 

How can Plato’s scheme, in which the aesthetic and the instrumental discover a 

surprising space of association, contribute to a re-evaluation of the status of the 



   100

instrumental within software art?  The layers of abstraction that characterize code 

operations are certainly not mimetic, but they obey the fundamental form of mimesis 

inasmuch as they involve a motion away from self-present origin.  Similarly, although 

Plato’s conception of poetic intoxication may seem very distant from rational software 

processes, the notion of involuntary poesis – in its automatism and blind pull – summons 

a sense of Turing’s concern with the universal machine’s dumb mechanical functioning.  

Within this context it is worth recalling that Adorno and Horkheimer conceive 

instrumental rationality precisely in terms of a limit point of reason in which rationality 

and irrationality coincide (Adorno and Horkheimer, 2000: 172).  If instrumental 

rationality reveals an irrational dimension, it is not only in terms of the division it opens 

up between episteme (knowledge of invariable principles) and phronesis (morally guided 

practical action), but also in terms of its suspension of human agency, its orientation 

towards an automatism that inevitably comes to resemble intoxication. 

Cropper_Propper_Gridder 

Overall then the genuine aesthetic potential of software lies in engaging with 

everything within software that seems most intrinsically inimical to the aesthetic – 

dimensions of instrumental function, non-reflective process and formulaic expression.  

Rather than struggling to find means of lifting up software to the status of art, there is a 

need to delve into the instrumental character of software, to genuinely engage with this 

space of risk and aesthetic alienation.  This is what Cropper_Propper_Gridder attempts.  

The work provides an example of an effort to conceive the relation to the instrumental 

differently.  If it does not take adequate shape as either a piece of software art or 

genuinely useful tool, then it is because it is concerned to explore a space of tension and 

awkward possibility.  The name is enough to suggest a dimension of awkwardness.  

Cropper_Propper_Gridder refers to three separate pieces of software that together form 

an apparatus for decomposing video and playing it back in discrete, grid-based portions.  

When it was exhibited, however, the work had a different name.  It was called Ice Time, 

which related to a specific instance of the work which focused on video sequences from 

the Ross Sea region in the Antarctic.  This suggests a further dimension of aesthetic 

awkwardness - the necessity to distinguish between the visible interface, with its specific 



   101

instances, and the generic status of the work as an engine, as a mechanism of 

decomposition, choreography and display.  Which of these demands attention?  Which of 

these has a properly aesthetic character?  Or is it both?  And if it is both then how are 

they to appear simultaneously?  What would this mean?  The work raises these kinds of 

difficult questions.  Prior to considering its uncertain status as a piece of software art, 

there is a need to provide more detail about the work itself, considering the underlying 

concept, the technical system and the exhibition context.  

Concept 

The project had its basis in the philosopher Henri Bergson’s (1911) condemnation of the 

‘cinematographic’ representation of time (which I mentioned in chapter 3).  According to 

Bergson, time as duration represents a qualitatively whole motion that cannot be 

subdivided without fundamentally altering its character:  

All is obscure, all is contradictory when we try, with states, to build up a 

transition. (Bergson, 1911: 313) 

Film, as a technology for cutting up time into frames and reassembling it for illusory 

temporal display, appears as a metaphor for the modern alienation from the genuine 

experience of duration.  In response to this, I wondered, perversely, whether time was not 

better experienced through a mechanism; not as a predictable linear sequence, but as a 

work of setting time astray, of manufacturing, emphasizing and exacerbating its 

obscurity.  I was thinking of projectors that run too slowly, in which the individual 

frames are visible, in which a sense of time emerges precisely through the disengagement 

of actual continuous time, in which time is manifest not as a single flow but as a set of 

flickering instants which serve both as an alienated reminder of some other time and as 

an immediate, yet dislocated, perception of current duration. 

This interest, this thematic space, is clearly not unique.  It charts relations to long-

standing aesthetic concerns within avant-garde film and video art, from the exploration of 

aspects of temporal sequence in Dziga Vertov’s 1929 Man with a Movie Camera, to 

Chris Marker’s concern with the invisible time of the black film leader in Sans Soleil 



   102

(1983), to the Australian artists, Rodney Glick and Lynette Voevodin’s display of 

columns of hours from a single day in 24Hr Panoramas (1999-2006).  It also connects to 

the tradition of experimental new media which explores issues of time in terms of the re-

combinatory possibilities of computation (Jaschko, 2003).  Some influential works 

include Joachim Sauter’s and Dirk Lusebruk’s Invisible Shape of Things Past (1995) 

which reconstitutes time slices as peculiarly non-temporal, sculptural entities, Martin 

Reinhart’s and Virgil Widrich’s tx-transform (1992-2002) which swaps the axes of 

temporal and spatial representation, and most relevantly Camille Utterback’s Liquid Time 

(2001-2) which enables portions of the video frame to play at different speeds and in 

different directions.  My work explores similar possibilities.  It decomposes the video 

frame into rows and columns of independently playing image sequences – in an effort to 

stage both the deconstruction of ordinary time and a summoning of temporal alterity. 

It is at this point that the conventional aesthetic idea necessarily engages with a 

technical imaginary.  There is a need to consider how the various aspects of the system 

can be implemented.  There is a need to devise systems, tools, engines.  There is a 

temptation to disregard this as a work of subsidiary technical implementation, but for me 

it indicates the vital process in which the aesthetic concept takes practical and poetic 

shape as an instrumental apparatus. 

 
Fig. 6: Brogan Bunt, Cropper_Propper_Gridder (2005) design concept  

Technical System 

The screen is composed of any number of squares which may or may not be 

arranged in a grid based manner.  Each square is composed of a set of sequences of still 



   103

images.  Each sequence may be played independently and in various ways (in terms of 

speed, direction, etc.).  Sequences may have associated sound files which may loop or 

play a specific number of times.  Finally aspects of playback may be choreographed in 

advance or enable live interactive control. 

The basic technical challenge involved finding means to decompose a video 

sequence into a set of independently playing image sections.  The neatest and most 

logical approach was to employ a single video file and dynamically decompose and 

reassemble frames from the cube of spatio-temporal data.  For long sequences, however, 

this was likely to demand retaining a very large number of frames within RAM and a 

constant process of multi-frame analysis to constitute any specific display frame.  This is 

probably technically feasible but seemed beyond my means.  Another obvious approach 

was to cut up the video in advance and play back any number of independent video 

streams.  This proved unworkable due to the considerable overhead that each stream of 

video imposed on the overall system.  It was not possible to play back more than a couple 

of video files at once.  My only other option was entirely simple, even anachronistic.  It 

involved conceiving the video sequences as game-style sprites.  Video sequences were 

decomposed into sets of video stills and then decomposed again in to sets of cropped 

images.  Represented as sprite arrays, these sets of cropped images could be played back 

in conventional sequential order, randomly or in any number of specific algorithmic 

ways.  This was the approach I adopted and miraculously it seemed to work even for a 

finely articulated grid (60 or so sequences running simultaneously), but it had one major 

drawback.  Instead of a single video file or a relatively small number of cropped video 

files, I had multiple directories filled with innumerable tiny image files.  In this sense, it 

was a plainly awkward and inefficient solution.  Moreover, in its literal complexity, in its 

fragmentation of data, it opened up the necessity for a set of specific tools to handle 

aspects of decomposition, choreography and display. 

Cropper 

Cropper is a small and unassuming utility program that handles the process of first 

cutting up sequences of video stills into rows and columns of cropped images and then 



   104

saving them within an appropriate directory structure.  It obscures the major part of its 

underlying functioning, merely displaying dynamic information concerning the 

percentage of images processed.  

 
Fig. 7: Brogan Bunt, Cropper (2005) interface 

Propper 

Propper is a much more ambitious program.  The role of this tool is to produce the 

underlying score that choreographs aspects of display.  It builds XML (Extensible 

Markup Language) description files that the display engine, Gridder, reads in order to 

know what media to load when and where.  XML makes dimensions of logical structure 

visible, legible and easily accessible (within text editors, browsers and so on); however, it 

can be slow to prepare manually.  Propper provides a rapid, visual means of writing these 

files. 

 
Fig. 8: Brogan Bunt, Propper (2005) interface 



   105

Gridder 

Gridder is the display engine.  A dialogue opens requesting that the user point to a 

relevant project directory.  Gridder reads the project xml description file and commences 

media display.  Additionally, the software enables interactive control of the playback 

parameters of image sections.  Gridder displays in a screen window with a standard title 

bar.  This is intended to remind the viewer/user that the work is a piece of software, not a 

piece of linear, pre-constructed video. 

 
Fig. 9: Brogan Bunt, Gridder (2005) interface 

Here is a screen shot without the title bar to provide a sense of the visible output of 

a more complex piece (a 9X3 grid with multiple ‘video’ sequences): 

 
Fig. 10: Brogan Bunt, Gridder (2005), Ice Time exhibition (2005) 



   106

Exhibition 

The screen shot above (Figure 10) is from the Ice Time exhibition.  The emphasis 

was upon the display of fragmented video sequences of the Antarctic. The choice of 

footage from the Antarctic was deliberate.  Antarctica is generally perceived as a space of 

pure glacial duration, yet we have recently become aware of its extreme temporal 

fragility; the Antarctic is entering another time – a time of division, of breaking up, even 

of imminent catastrophe.  Without pursuing this point in an explicit political manner, the 

conjunction of the software apparatus (as a work of temporal decomposition and the 

flickering re-summoning of time) and the samples of an entirely fragile realm of duration 

suggests a dimension of temporal uncertainty that has political implications. 

Leaving aside the specific thematic issues addressed in this exhibition, the issue 

that mainly concerned me was the near invisibility of the Cropper/Cropper/Gridder 

apparatus in the exhibition display.  Although I had spent close to two months producing 

the software and perceived it as the vital context in which the aesthetic concept took 

generic shape, there seemed no satisfactory way of acknowledging the apparatus, of 

making it appear aesthetically.  I was very aware that the project may appear as a work of 

video compositing rather than software art.  It is this sense of uncertainty (and frustration) 

concerning how to adequately exhibit the work that has prompted this specific reflection 

on the instrumental. 

Software Art? 

As I have suggested, the vital problem that the project raises for me is in identifying 

the properly aesthetic character of the work.  A conventional view would distinguish 

between the aesthetically significant exhibited work and the aesthetically inconsequential 

background technical infrastructure.  The contemporary notion of software art seems to 

provide a corrective to this view but ends up insisting upon a non-instrumental model of 

software as a form of abstract formal enquiry and/or self-reflexive software critique that 

has the unfortunate consequence, once again, of positioning the instrumental component 

of Cropper_Propper_Gridder as work of mere technical implementation.  At the same 

time the software art status of the exhibited interface is questionable because it is less 



   107

about reflectively revealing the dimension of code than about setting code into relation 

with the particularity of specific temporal samples.  On what basis then do I regard the 

overall project as a work of software art? 

The project represents a meditation on issues of the coded, discontinuous character 

of represented time that is conducted through the medium – the linguistic and discursive 

forms – of software.  In this sense, it represents an example of what Fuller describes as 

‘speculative software’ (Fuller, 2003: 29).  Although the boundaries blur, Fuller 

distinguishes speculative software from ‘critical software’ (Fuller, 2003: 22) in that the 

former is oriented less towards deconstruction than making; it engages with ‘the havoc of 

invention’ (Fuller, 2003: 32).  Cropper/Cropper/Gridder may be regarded as a 

speculative apparatus; it takes shape as a perverse media player, one in which the 

dimension of time is disarticulated and re-composed. 

The work gains aesthetic coherence as an overall system that includes an element of 

generic operation and specific instantiation.  In terms of the generic character of the 

work, the underlying poetic idea is realized as a linked system of functional tool-based 

operations which together form an abstract machine, an engine.  Cropper represents the 

motion of decomposition, Propper the work of reassembling, and Gridder the rendering 

of an unnatural spatio-temporal logic in actual time.  In its operation, the engine 

inevitably structures a moment of instantiation.  The aesthetic dimension of the latter 

emerges in the friction between coded time and the particularity of sampled actual time.  

Without an awareness of the background software, this sense of friction is lost.  The 

dimensions of interface and implementation are integrally aesthetically related. 

The instrumental orientation represents an important aesthetic choice.  The 

strangeness and technically anachronistic character of the project is heightened precisely 

by pursuing it through the agency of the instrumental, by discovering means to realize a 

perverse, absurd, idiosyncratic idea as efficiently as possible.  Accordingly, at a stylistic 

level the software resists adopting a conventional aesthetic guise; it is deliberately 

blankly ordinary.  The Java Swing style interface elements – menus, tabbed windows, 

hierarchical lists, radio buttons, etc. – interested me particularly in their anonymity and 



   108

their embeddedness in the logic of instrumental software production and use.  If the 

explicit conceptual theme is the alienation of time via mechanical division then the 

choice of a blank instrumental style works in my view to heighten the sense of alienation.  

Of course, the problem is that none of this was seen by the exhibition audience.  

This is written then as a critique of the work’s original mode of exhibition.  The work 

needed to demonstrate both the engine and the interface in order to properly address the 

conceptual them of the coded representation of time, as well as the equally important 

theme of the relation between an instrumental apparatus and an aesthetic concept.   

Conclusion 

My overall argument is that rather than positioning the instrumental, tool-based 

character of software as some grim fact that must be rigorously resisted, there is vital 

need to work through the instrumental, to explore its possibilities.  This entails a risk – 

the risk of facilitating software functioning, of engaging with its work of abstraction, 

encapsulation and disguise.  It projects a space of uncertain creation that cannot 

altogether shake of a relation to the blindness of mechanical process, that must find 

means to reflect amidst a work of operational making.  The clear difficulty is in finding 

adequate means to conceive a work of critical reflection within the texture of 

instrumental relations when the self-consciousness of critical awareness is precisely what 

is put at risk.  In my view there is no easy solution to this dilemma.  Instead there is a 

constant work of negotiation – of engagement and distanciation with whatever it is that 

an instrumental device and an aesthetic work represents.  This would seem to demand a 

re-examination of the relation between ‘software culturalism’ and ‘software formalism’ 

(Cramer, 2002:10).  It may be that it is precisely at the level of form (regarded as a 

material discursive fact and experimental space) that the most profoundly cultural 

questions are raised.  Of course, how these questions are to be articulated – how they are 

to take constitutive shape as processes, engines and interfaces – remains an open 

question. 

 



   109

Chapter 7 
________________________________________________________________________ 

Openings 

 

Introduction 

The third and final dilemma of software art that I mentioned at the end of chapter 4 

is that of recursion.  This is once again a problem of reflection.  Software, it is argued, 

can only aspire to art if it is reflective.  Faced with conventional software’s tendency to 

hide and its insistent instrumental orientation, software art attains properly aesthetic 

shape in its work of reflection.  The revelation of aspects of code process and the critique 

of the culture of software becomes the dominant thematic concern.  As a result, software 

art is caught within a recursive cycle.  It is doomed to endlessly reflect upon its own 

formal and cultural conditions.  To pursue any other concern appears as an affirmation of 

the invisibility of instrumental functioning.  

On this basis, Johansson argues that software art is bound to a mise-en-abyme 

aesthetics (Johansson, 2004: 151) that leaves little room for aesthetic opening and Cramer 

(2002) writes of the apparent lack of future for both formalist and culturalist tendencies: 

If Software Art would be reduced to only the first [formalism], one would risk 

ending up with a neo-classical understanding of software art as beautiful and 

elegant code along the lines of Knuth and Levy.  Reduced on the other hand to 

only the cultural aspect, Software Art could end up being a critical footnote to 

Microsoft desktop computing, potentially overlooking its speculative potential at 

formal experimentation. (Cramer, 2002, 10) 

I have questioned the value of conceiving software art entirely in terms of an 

opposition between formal and cultural orientations.  Apart from obscuring a more 

significant dialogue between instrumental and aesthetic discourse, it also renders 

formalism and culturalism as caricatures.  A concern with form, for instance, need not 

entail a lack of concern with anything else.  It can encompass interests that extend beyond 



   110

the self-collections of form – that seek out the non-identical precisely through the 

paradoxical agency of form.  This is evident, for example, in the tradition of Minimal Art, 

in which an extreme awareness of form and an extreme formal reduction are oriented 

towards the staging of aporia rather than the formal integrity of a composition.  

Similarly, culturalism need not take exclusive shape as a concern with the culture of 

software.  Instead of single-mindedly looping back on itself, software may engage with 

culture in all manner of different ways.  I think of the example of the radical documentary 

tradition – filmmakers such as Chris Marker, Jean Rouch and Georges Franju – who 

manage to reflect upon the epistemological and aesthetic conditions of documentary film 

at the same time as exploring other issues.  Their work of reflection avoids disabling 

solipsism and becomes integral to pursuing a broader set of cultural concerns. 

This chapter aims then to resist this sense of reflective closure – to suggest 

possibilities of opening.  In the previous chapter I discussed a specific, and particularly 

important, form of opening – the relation to the instrumental.  Rather than possessing an 

entirely internally coherent identity, software art engages with a space of instrumental 

functioning that both shapes its interior dynamic and exceeds it.  Here I wish to suggest 

three additional forms of opening: the first hinges on questioning software art’s self-

enclosed generic integrity, suggesting instead a permeable relation to a wider universe of 

aesthetic practice; the second takes shape in terms of software art’s potential to engage 

with the alterity of the real; and the third concerns software art’s relation to the aporetic 

opacity of finite computational processes.  This chapter considers each of these forms of 

opening in terms of my own work.  My argument is that while maintaining a reflective 

aspect, these openings signal the limits of conceiving reflection as an autonomous, 

constitutive, aesthetic ground.  Rather than a pure space of self-present critical-aesthetic 

thought, reflective software art practice demands a thinking of dimensions of both 

exterior and interior non-identity. 

Permeable Relations 

Despite its technological specificity – the specificity, for instance, of its executable 

framework – software is not aesthetically isolated.  Even were it to hope that it could 

endlessly reflect on its own processes, it would discover traces of other traditions and 



   111

genres.  This is hardly an original observation.  Cramer (2005) does an excellent job of 

describing the rich cultural heritage that informs software art practice – from medieval 

rhetoric to OuLiPo poetic constraints and the language games of Conceptual Art.  In a 

more wayward fashion, Fuller traces links to the deconstructive architectural practice of 

Gordon Matta-Clark (Fuller, 2003: 39-49) and obscure disciplines such as Nomography 

(‘This lost art is essentially that of producing gridded visual diagrams showing the results 

of what would otherwise be mental calculations’ (Fuller, 2005: 161)). 

While the permeable character of the genre is emphasized, specific sets of 

association have been avoided.  I am thinking particularly of the relation to traditional 

‘mechanically reproducible’ media such as film and photography.  It seems that these are 

too obviously material, too apparently passive and too clearly tied to dimension of 

sensible perception to adequately engage with software art’s constitutive abstraction and 

executable nature.  While Manovich (2001), Batchen (2006: 27-44) and others have 

traced all kinds of links between traditional media and computation, these have occurred 

within the context of theorizing new media rather than software art.  As we have seen, the 

fundamental effort to distinguish the specific character of software art depends upon 

bracketing new media, upon presenting new media as a kind of blindness to underlying 

code processes.  This seems very unfortunate.  Certainly my own software art practice is 

vitally constituted by a dialogue with aspects of traditional media.  There is a tendency to 

associate the latter with a linearity that is inevitably opposed to the re-combinatory 

spatiality of software, yet this is to ignore strands of traditional media practice that 

anticipate the conceptual patterns of software.  Consider, for example, the formal device 

of film montage, which in Eisenstein’s (1986: 181-183) classical conception is not about 

tying aspects of time and space together into a seamless and coherent narrative whole, but 

about placing paradigmatic elements side by side – suggesting something new in their 

friction, in their charged juxtaposition.  Even a formal device such as looping repetition, 

which seems so intimately enmeshed in the language of computation, is anticipated by 

traditional media.  I can remember spending many (highly aesthetically derivative) hours 

working with audio tape loops and producing scratch-style video in the early 1980s.  In 

this sense, software programming represents another and more dedicated means of 



   112

exploring themes of re-combinatory structure and iterative pattern that are co-extensive 

with strands of experimental media production. 

A number of my software art projects are fundamentally concerned with the 

relation to traditional media.  As I mentioned in the previous chapter, 

Cropper_Propper_Gridder is an alternative media player, reconceptualising the 

representation of filmic time in terms of the possibilities of computation.  Halfeti – Only 

Fish Shall Visit (2001) connects a concern with code to the investigation of real social 

space.  It explores the potential to develop links to film and photographic documentary 

traditions.  It is worth examining the latter’s relation to software art. 

 
Fig. 11: Brogan Bunt, Halfeti – Only Fish Shall Visit (2001) 

Halfeti – Only Fish Shall Visit is an interactive documentary focusing on a small 

Turkish town in the months just prior to its flooding by the waters of a large hydro-

electrical project (the Birecik dam just north of the Syrian border on the Euphrates 

River).  At a conceptual level, the work explores relations between the formal articulation 

of space found within the adventure game and the cultural concerns and representational 

aesthetics of the experimental documentary tradition.  The work establishes a spatial-



   113

navigable interface to a large set of documentary data – several thousand photographic 

images, a large number of ambient audio files and close to an hour of video 

(incorporating interviews and observational footage).  The user gains the sense of 

‘wandering’ about the town, following lanes and pathways, entering open doors, and here 

and there coming across people who explain aspects of their lives and their responses to 

an uncertain future. 

Described in these terms, the work may seem to bear very little relation to the field 

of software art.  The emphasis on interaction, display and media instantly suggests a work 

that is insufficiently self-reflectively code focused.  Yet, alongside its documentary focus, 

Halfeti – Only Fish Shall Visit is very much concerned with code.  Indeed it explicitly 

aims to re-think the documentary genre in terms of the possibilities of code.  One of the 

specific challenges of the work was to discover an appropriate means to represent the 

complexity of a real social space.  I had previously produced simple navigable games in 

which space was represented as a grid and movement from one place to another was 

calculated mathematically.  But the winding, irregular space of Halfeti demanded other 

strategies.  There was a need to develop an abstract data structure that could somehow 

encompass complexity within a simple hierarchical framework.  While the work makes 

no effort to literally display this data structure and indeed deliberately disguises it in the 

interactive interface, the work is reflective in another sense.  A major aim was to qualify 

and unsettle the sense of immersive engagement that typical games establish.  The user 

moves between static images, hears looping ambient sounds and encounters sudden, 

montage-like transitions from morning to afternoon, day to night, sunshine to snow.  In 

this manner there is an explicit acknowledgement that the work is a coded mechanism 

that summons the past not in the guise of a fictional, available present but as a space of 

incomplete recollection and loss.  Roland Barthes’ (1981) account of photography in 

Camera Lucida provides some inspiration for this approach.  Barthes represents 

photography as a wound that summons and manifests the intractable otherness of past 

events (Barthes, 1981: 77).  I was attempting something similar in Halfeti – Only Fish 

Shall Visit – not simply at the level of individual images but through the fragile artifice of 



   114

the navigational engine, which suggest less immediacy than the inevitably flawed 

retracing of steps within mechanical memory. 

In this respect, Halfeti – Only Fish Shall Visit shapes a process of reflection which 

engages with the paradoxical character of traditional media; the curious combination of 

intimacy and distance that photography, for instance, projects.  This motion of reflection, 

however, is not properly manifest at the level of source code (which can only appear 

opaque and mystifying to non-programmers) but functions instead at the level of the 

sensible interface – explicitly teasing out the friction between an artificial apparatus and 

the texture of the real.  Veering from the standard conception of software art, the work 

resists an autonomous reflection on underlying software processes and instead posits one 

that is enmeshed with issues of representation. This dialogue with traditional media 

represents less a failure to properly conceive the aesthetic possibility of software, than an 

effort to genuinely think its permeable discursive character – its intrinsic dimension of 

opening. 

Mechanism and Alterity 

If traditional media focuses on issues of representation, describing a relation to the 

world and a space of encounter, computation typically suggests something different.  It is 

about abstracting rules and conjuring simulations.  Rather than the indexical trace, there 

is the numerical sample and the algorithmically constituted semblance.  In this sense, 

computation less represents the world than abandons it and recreates it elsewhere.  

Consequently, it appears unaffected by the longing that Barthes describes – the endless 

play of summoning and deferral that characterizes traditional media.  Instead of exterior 

relations, computation establishes a space of finite autonomy and self-functioning.  Yet 

this can be interpreted differently.  As I suggested in relation to Halfeti – Only Fish Shall 

Visit, an engine need not only remain focused on its own operations.  It can become a 

means, paradoxically, of enabling a relation to the alterity of the real.  Its motion of 

apparent turning away can enable a strange return. 

In his discussion of Henri Bergson’s notion of ‘cinematographic time’ (Bergson, 

1911: 306) Deleuze describes the specific novelty of film representation: movement is no 



   115

longer ‘recomposed from formal transcendental elements (poses), but from immanent 

material elements (sections)’ (Deleuze, 1986: 4).  Instead of human vision and deliberate 

framing and composition, the emphasis shifts to the mechanical sampling of instants of 

time.  The choice of instant is motivated by the logic of the camera apparatus rather than 

by any specific conscious representational agenda.  In this sense, Bergson regards the 

film image as having an arbitrary temporal aspect; it is an ‘any-instant-whatever’ 

(Deleuze, 1986: 6).  Precisely by suspending a level of human decision-making and 

intervention, cinema discovers a means to access something beyond the a priori 

conception of time; to figure time in its alien, material aspect.  Film appears then as a 

mechanism of abstraction and division which enables paradoxical access to an ordinarily 

inaccessible dimension of sovereign particularity.  In this manner, Bergson and Deleuze 

associate the specific representational power of film with features that anticipate core 

aspects of computation (automation and sampling).  My interest here, however, is less in 

re-considering the nature of traditional media in terms of computation, than in 

recognizing that computation, and software art specifically, can also engage with a 

representational imaginary.  My aim is to consider how the thinking of code shaped my 

processes of documentary production in Halfeti – Only Fish Shall Visit and provided a 

means of engaging with the specific texture of a historical place, but it may be worth 

considering another relevant example first. 

The field of ‘psychogeography’, which draws on the concept of the flaneur and the 

derive (drift), is associated with Situationism and Fluxus.  It is a mode of experimental 

practice that aims to encourage an open discovery of urban space, a re-interpretation of 

space in non-habitual and non-instrumental terms.  Whereas this may have initially 

summoned a thinking of highly subjective, idiosyncratic forms of wandering, more 

recently there has been an emphasis on ‘algorithmic psychogeography’ (Crystalpunk, 

n.d.).  Practitioners follow simple algorithms such as ‘second right, second right, first left, 

repeat’ (Crystalpunk, n.d.).  Rather than remaining stuck in an abstract geometrical rut, 

the combination of a mechanical method and the complexity of real urban space opens up 

the potential for spatial discovery. 



   116

While Halfeti – Only Fish Shall Visit was much more directed towards evoking 

elements of spatial continuity, a similar friction between the demands of coded system 

and actual space is evident.  If the normal photographic strategy is to frame an image to 

make a specific conceptual or aesthetic point, here my approach was circumscribed by 

the need to record logical views that made sense within the overall spatial-interactive 

framework.  Over a period of a few weeks, I followed a network of paths that led out 

from the center of the town, at regular intervals recording images forward, back, left and 

right.  As a result, the town is documented in a curious semi-automatic fashion.  I 

captured views that nobody else would bother to photograph – a faint path, a close-up of 

a wall, a dark room, half a tree.  These banal, uninteresting, particular images have a 

positive value for me.  They are the product of a process of spatial discovery that 

combines elements of schematic necessity and slight aesthetic mediation.  They chart an 

association between hierarchical order and wayward wandering and engender a curious 

tension between the abstract and the particular.  Abstraction becomes a means of staging 

an opening, of establishing relations to the alterity of the real. 

  
Fig. 12: Brogan Bunt, Halfeti – Only Fish Shall Visit (2001) 



   117

Finitude and Non-Identity 

It is not only by looking outside code that openings are discovered.  They also 

appear within code, within the very motion of finitude that appears to constitute a stable 

basis for software art’s reflective self-identity.  Here it is less a matter of pursuing 

algorithms that generate the semblance and underlying structure of organic complexity 

than of focusing upon basely mechanical operations.  Programming shapes a relation to 

the machine that constantly hits up against the mystery of execution, of a motion of 

becoming that is manifest but not reflective. 

This is a possibility that I explore in Hotel (2002).  Hotel is an ironic generative 

game space.  Instead of shaping an endless world of artificial wonder, it renders space 

explicitly Lego-like and repetitive.  Hotel represents a response to Halfeti – Only Fish 

Shall Visit.  It withdraws from the picturesque particularity of a real social place to 

explore a space of total artifice (the images are not photographs but renderings of an 

artificial 3D world).  Instead of a pre-determined data structure representing every aspect 

of space, it begins with a void and a set of combinatory spatial elements.  The space is 

built up in a dynamic random manner as users wander about.  Once an option is selected, 

however, it is locked in place (hence users can always retrace their steps to the notional 

origin).  Crucially then, rather than an overall map, the space is represented as a fragile 

and abstract tissue of associations between one spatial node and another (a dynamic 

linked list rather than an exhaustive hierarchical array). 

 

Fig. 13: Brogan Bunt, Hotel (2002) Fig. 14: Brogan Bunt, Hotel (2002) spatial 

elements 



   118

 

Users find themselves stuck in a hotel corridor with no other option than to wander about.  

They can wander as far as they like but only ever discover the same kinds of corridors, 

lifts and vestibules.  If they do manage to find their way into a secret room which 

provides a kind of primal (very conventionally surreal) mythological scene, then they are 

straight away transported back to the starting moment and an even clearer recognition of 

the recursive, cyclical nature of the space.  To relieve the tedium, the hotel corridors 

contain distractions and strange clues which point to the secret room and aspects of the 

underlying mythological narrative.  It may be worth briefly describing this narrative 

because it is specifically concerned with issues of finitude and opening. 

 
Fig. 15: Brogan Bunt, Hotel (2002) 

 
Fig. 16: Brogan Bunt, Hotel (2002) 



   119

The hotel appears as a space of order and light.  It appears as the product of rational 

consciousness.  Here and there, in images on walls, in voices associated with particular 

room and objects, there is the sense of some human architect.  It appears visibly as a 

detached head.  This head imagines that it is responsible for this space, that it has made it 

and manages it.  Yet despite its brightness, there are elements that suggest that something 

is amiss.  Apart from the oddness of the spatial repetition, there are inexplicable pictures, 

bizarre intercoms and televisions, and alcoves containing chromed body parts, sea 

creatures and household utensils.  Here and there, as well, weird fish swim along the 

corridors.  The secret room (hidden in a keyhole) provides an alternative account of this 

place.  Rather than the product of reason, it is a bubble produced from the mouth of a 

fish.  It is the product of darkness and chaos and the human head, endlessly dreaming, 

only imagines its constitutive power.  This is intended as a metaphor for the apparent 

closure of computational systems, which is always precarious and, in its most 

fundamental processes, reveals traces of non-identity that elude self-collected 

consciousness. 

My aim in this project was to ironically reflect on the closure of the digital, yet at 

the same time, strangely and unexpectedly, it came to reveal other possibilities.  Abject 

processes of looping, repetition and random recombination engaged with the curiosity of 

mechanical manifestation.  The system became strange in its operation, in its play.  

Something as simple as the random choice of one of four rooms, one of seven sound files 

or one of twelve video files suggested a dimension of non-identity within digital 

processes themselves.  This can be linked to Nietzsche’s notion of the ‘eternal return’, in 

which the metaphor of the dice throw suggests a relation between chance and necessity 

and in which finitude becomes the basis for a thinking of the openness of becoming.  

Nietzsche describes the motion of the dice in terms of ‘dynamic quanta, in a relation of 

tension to all other quanta’ (Nietzsche, 1968: 339).  Software art can choreograph forces 

and set them at play, but the actual motion of execution constitutes a domain of 

estrangement and opening. 

It is not as though this mode of opening ever appears sufficient.  Simple random 

operations often appear as a cliché, yet at the same time, despite their over-use, they 



   120

retain a curious sense of wonder which is precisely linked to a non-reflective dimension 

of performance.  They engage the creative capacity of the machine, which is far less 

about staging generative complexity than manifesting the most basic decisions. 

Conclusion 

These three forms of opening shape an important field of magnetic attraction within 

my software art practice.  At times I pursue openings in the relation to traditional media, 

at times in relation to the alterity of the real, and at other times within the non-identity of 

programmatic processes.  The various poles of attraction can both stray apart and 

coincide.  I would like to conclude by mentioning two recent works that pursue radically 

different directions. 

Walk 

 
Fig. 17: Brogan Bunt, Walk (2006) 

Walk is a perverse work that draws the field of psychogeography back within 

computation.  Algorithms geared to the discovery of real space, now return to code and 

flicker about on a strictly-defined grid.  A set of walk objects follow mathematically 

determined paths across the grid.  In standard game style, if they encounter an edge then 

space wraps to the opposite side of the grid.  If the objects meet on the same grid square 



   121

while making a navigational decision then they are randomly allocated new colours and 

algorithms.  This project represents less a withdrawal from the real than an attempt to 

think it askance, to transpose it back within abstraction.  At one level, it is a parody of 

human psychogeographical motion.  At another level, it is a work of visualization, 

enabling code to become metaphorical and thus be seen.  At another level again, it 

engages a play of finite wonder – it is fascinating (for me) as a repetitive and yet 

inexplicable space of manifestation.  

Paphos 

 
Fig. 18: Brogan Bunt, Paphos (2006) 

Another recent work follows an almost opposite trajectory.  Paphos is a piece of 

documentary video art, exploring moments at the margins of an Australian archaeological 

dig in Paphos, Cyprus.  Despite its apparent distance from software art, the work – like 

Halfeti – Only Fish Shall Visit – conceives documentary in terms of the thinking of code.  

The process of recording followed a roughly determined set of constraints.  Each 

sequence is about one minute long and the camera remains motionless throughout.  The 

sequences represent samples of Paphos time.  I determine the framing but cannot predict 

what will happen in front of the camera during the minute of recording.  Individual 

samples are strung together into a vague and inconsistent temporal sequence 



   122

(representing a gradual shift from morning to night), but the collection of samples are 

essentially constituted as a paradigmatic set, representing mythological, contemporary, 

iconic and interstitial aspects of Paphos. 

These projects indicate that software art appears to me not as an autonomous space 

but as a motion back and forth between code and other media, code and the world.  It 

describes dynamic trajectories and systems that inevitably inscribe relations beyond the 

fantasy of closure. 



   123

Chapter 8 
________________________________________________________________________ 

Conclusion 

 

This dissertation has conceived software art as a space of tension which mediates 

new relations between machine and human, instrumental and aesthetic and abstract and 

particular.  I have argued that these oppositions have both formal-aesthetic and cultural-

institutional implications.  A close concern with the language of code entails engagement 

not only with a formal linguistic and conceptual space but also with a broader social 

space.  Software art cannot escape its relation to the more general culture of software – 

the sphere of industrial making and instrumental functioning which provides a vital 

ground and point of reference for contemporary experimental practice.  Rather than 

shying away from these relations and withdrawing into the safety of traditional 

conceptions of the aesthetic, software art does much better to acknowledge and pursue its 

genuine space of risk. 

Engaging with Code 

I have considered the notions of software and software programming.  I have traced 

the historical emergence of software art and have examined specific dilemmas that 

confront the genre in terms of issues that arise within my own work.  I have not, however, 

offered a clear alternative definition of software art practice.  Pressed on this issue, I 

would argue that software art represents a close engagement with the language and 

discourse of software production.  It emerges through a work of coding, through an 

imaginative relation to the field of computer programming.  This takes characteristic 

form in work that is literally coded and that bears a fundamental and intimate concern 

with the field of machine functioning, but it can take other forms as well.  Manovich 

speaks of processes of ‘transcoding’, in which the forms of code come to shape the 

‘cultural layer’ (Manovich, 2001: 46) and Cramer argues that ‘software is no longer just 

machine algorithms, but something that includes the interaction, or, cultural appropriation 

through users’ (Cramer, 2005: 122).  For me, a work such as Paphos, which is not 

literally a piece of software, is shaped nonetheless by a coding imaginary.  While only 



   124

loosely a piece of software art, it highlights a wider space of conceptual-aesthetic 

possibility and suggests an inevitable dialogue with other modes of creative practice. 

Some critics, however, advocate a more restricted conception of software art.  

Despite the inclusive rhetoric of the early transmediale and Read_Me festivals, critics 

such as Inke Arns (2004) associate software art exclusively with practices of cultural 

critique and bracket formalist genres such as generative art due to their apparent lack of 

critical self-reflexivity.  Arns argues that whereas generative art focuses on the 

performance and visible results of generative (artificial life) algorithms, software art 

focuses upon exposing underlying machinations (Arns, 2004: 183).  My problem with 

this restricted definition is that it not only oversimplifies the field of generative art – 

which includes practitioners such as Paul Brown whose work demonstrates, as Mitchell 

Whitelaw argues, an explicit concern with ‘purely formal structures, templates for 

computation, patterns of rules’ and an ‘unhinging of figure and mechanism’ (Whitelaw, 

2004: 147) – but, more significantly, imagines that the engagement with code can 

constitute a pure moment of critical revelation.  I have argued, on the contrary, that 

programming necessarily entails processes of hiding – that its operations elude and 

undermine simple visibility.  Rather than literally exposing code, software art inevitably 

shapes metaphors and disguises, abstractions and interfaces.  Indeed, as I suggested in 

Chapter 4, many pieces of formalist software art – and generative software art 

specifically – are precisely constituted as metaphors for underlying code processes.  John 

Conway’s Game of Life, the founding work of generative artificial life, provides an 

exemplary instance (Conway, 1970).  The visual elements – the abstract grid of squares 

and the flickering play of ‘gliders’, ‘blinkers’ and other forms of ‘life’ – provide a means 

of explicating the rules, of playing them out in a sensible, visible manner. 

In my view, the exclusive emphasis on critical self-reflection serves as an escape 

from the risk of software art, a disengagement from the dimension of process.  It 

represents an effort to portray the relation to software in terms that entirely correspond to 

a fantasy of assured radical aesthetic practice.  In this manner, it disregards software art’s 

dependence upon the discursive space of conventional software and its necessary 

complicity with the language of instrumental functioning.  Overall, there is a need to 



   125

conceive the medium of software and the critical character of software art in more subtle 

terms.  Software art can enable neither a pure gesture of formalism nor an entirely self-

collected moment of reflective critique.  It inhabits a messier and more uncertain terrain. 

In relation to formalism, although at one level software art manifests a return to the 

notion of a medium (a space of writing, of craft), at another level it abandons the 

reassuring character of a traditional medium; form and matter are no longer immanently 

combined, they slip apart.  Instead of a complex single aesthetic substance (the organic 

unity of a work), there is a play of abstraction, layering, disappearance and disguise.  

Furthermore, the material space of software writing demands a thinking of the cultural 

dimensions of order and algorithmic process.  It is not easily or adequately reducible to a 

nakedly formal potential.  

Similarly, critical-cultural software cannot maintain the pretence of pure 

opposition.  Its engagement can never be simply critical.  Fuller’s notion of ‘speculative’ 

software practice (Fuller, 2003: 29) provides a means of describing an exploratory, 

typically anachronistic work of tinkering with aspects of the software heritage that can 

potentially shape all kinds of relations between processes of imaginative making and 

critical reflection. 

Overall, my enquiry suggests that the genuine political potential of software art 

emerges less in terms of explicit efforts at deconstruction than in terms of a rigorous (and 

self-consciously anachronistic) engagement with the technological tradition.  It is by 

finding one’s way (and becoming lost) in this complex technical-discursive space that 

other possibilities emerge.  Software art, in my view, opens up an intimate relation to 

processes of operation and making and unsettles narrowly critical views of art practice.  It 

risks the unconsciousness of mechanism.  It pursues and reflects upon this risk.  It 

discovers in this risk both uncertainty and inspiration. 



   126



   127

Bibliography 

8-Bit Collective (Beige programming ensemble) (n.d.). [website]. 
            http://www.post-data.org/beige/ (accessed 23 January 2007). 
Adorno, T. (1997). Aesthetic Theory. London & New York, Continuum. First published 
            in 1970. 
Adorno, T. and Horkheimer, M. (1982). ‘The Culture Industry: Enlightenment as Mass  

Deception’, in Curran, J., Gurevitch, M. and Woolacott, J. (eds). Mass 
Communication and Society. London, Open University Press, pp. 349-383. First 
published in 1947. 

Adorno, T. and Horkheimer, M. (2000). 'The Concept of Enlightenment', in O'Connor, B.  
(ed). The Adorno Reader. London, Blackwell Publishing, pp. 156-173. First 
published 1944. 

Agar, J. (2001). Turing and the Universal Machine: The Making of the Modern 
           Computer. Cambridge, Icon Books. 
Agile Alliance (n.d.). [website]. http://www.agilealliance.org (accessed 8  

January 2007). 
Aristotle (350 BC c.) Nichomachean Ethics. 

http://classics.mit.edu/Aristotle/nicomachean.html (accessed 4 January 2007). 
Aristotle (1965) On the Art of Poetry, in Dorsch, T.S. (ed). Classical Literary Criticism.  

Great Britain, Penguin Books, pp. 31-75. First published: undated. 
Arns, I. (2004). ‘Read_Me, Run_Me, Execute_Me: Software Art and its Discontents, or: 
            it's the Perfomativity of Code, Stupid!’, in  Goriunova, O. and Shulgin, A. (eds). 
            read_me: Software Art & Cultures. Arhus, Aarhus University Press, pp. 176-188. 
Babbage, C. (2005). 'Of the Analytical Engine', in Norman, M. (ed). From Gutenberg to 
            the Internet: A Sourcebook on the History of Information Technology. Novato, 
           California, thehistoryofscience.com., pp. 281-293, First published 1864. 
Banzi, M. (2006). ‘Getting Started with Arduino’.  

http:www.arduino.cc/en/uploads/Booklet/Arduino_Booklet02.pdf (accessed 15 
January 2007). 

Barthes, R. (1981). Camera Lucida. New York, Hill and Wang. 
Batchen, G. (2006). ‘Electricity Made Visible’, in Chun, W. H. K. and Keenan, T. (eds). 
            New Media/Old Media. New York & London, Routledge, pp. 27-44. 
Battaile, G. (1985) ‘The Notion of Expenditure’ in Bataille, G. Visions of Excess, 
            Selected Writings, 1927-1939. Edited by A. Stoekl. Great Britain, Manchester 
            University Press, pp.116-129. 
Beige (programming ensemble) (2001). ‘Deadtech: Post-Data in the Age of Low 
            Potential’. http://www.epidemic.ws/biennale_press/deadtech.htm (accessed 16 
            December 2006). 
Benjamin, W. (1977) ‘The Work of Art in the Age of Mechanical Reproduction’ in 

Curran, J., Gurevitch, M. and Woollacott, J. (eds). Mass Communication and 
Society. London, Open University Press, pp. 384-409 

Bergson, H. (1911). Creative Evolution. New York, Henry Holt and Company. 
Blais, J. and Ippolito, J. (2006). At the Edge of Art. London, Thames & Hudson. 
Blast Theory (2004). http://www.blasttheory.co.uk/ (website, accessed 17 December 
            2006). 



   128

Borevitz, B. (2004). ‘Super-Abstract: Software Art and a Redefinition of Abstraction’, in   
Goriunova, O. and Shulgin, A. (eds). read_me: Software Art & Cultures. Arhus, 
Denmark, University of Aarhus, pp.298-312. 

Brown, P. (2000). ‘Stepping Stones in the Mist’. 
http://www.paul-brown.com/WORDS/STEPPING.HTM (accessed 20 December 
2006). 

Brown, P. (2003). ‘The Idea Becomes a Machine: AI and Alife in Early British Computer  
Arts’. Consciousness Reframed: Art and Consciousness in the Post-biological Era 
(5th CAiiA International Research Conference), Caerleon UWCN Wales UK. 
http://www.paul-brown.com/WORDS/CR2003.PDF (accessed 20 December 
2006) 

Burger, P. (1984). Theory of the Avant-Garde. Minneapolis, Minnesota, University of  
Minnesota Press. 

Chesher, C. (2001). Computers as Invocational Media (unpublished PhD thesis). Sydney,  
Macquarie University.  

Chun, W. H. K. and Keenan, T. (eds) (2006). New Media, Old Media. New York and  
London, Routledge. 

Copeland, J. (2004). ‘Computation’, in L. Floridi (ed). Philosophy of Computing and  
Information. Malden, Massachusetts, Blackwell Publishing, pp. 4-6. 

Cramer, F. (2001). untitled comment on Manovich. 
http://absoluteone.ljudmila.org/cream.php (accessed 21 

            December 2006). 
Cramer, F. (2002). ‘Concepts, Notations, Software, Art’. Seminar for Allegmeine und  

Vergleischende Literaturwissenschaft. 
Cramer, F. (2005). Words Made Flesh. Rotterdam, Piet Zwart Institute Media Design  

Research. 
Cramer, F. and Gabriel, U. (2001). ‘Software Art’. Transmediale.01 Arts Festival, Berlin. 
Crystalpunk (n.d.). ‘Crystalpunk: The Chain Reaction Glitterati’. [website]  

http://socialfiction.org (accessed 13 January 2007). 
Deleuze, G. (1986). Cinema 1: The Movement Image. Minneapolis, Minnesota, The 
            Athlone Press. 
Derrida, J. (1976). Of Grammatology. Baltimore & London, The Johns Hopkins 
            University Press. 
Druckrey, T. (ed.) (1999). Ars Electronica: Facing the Future. Cambridge, 
            Massachusetts, The MIT Press. 
Duchamp, M. (1973). “The Green Box”, in Sanouillet, M. and Peterson, E. (eds). The  

Writings of Marcel Duchamp. New York, Da Capo Press, pp. 26-71. First 
published 1934. 

Eagleton, T. (1990). The Ideology of the Aesthetic. Oxford and Cambridge, 
            Massachusetts, Basil Blackwell. 
Eisenstein, S. (1986). The Film Sense. London, Faber and Faber Ltd. First published in 
            1943. 
Feynman, R. P. (1996). Lectures on Computation. Edited by Hey, A. J. G. and Allen, R. 
            W. London, Penguin Books. 
Farouzan, B. (2003). Foundations of Computer Science: From Data Manipulation to 
            Theory of Computation. Canada, Brooks/Cole - Thomson Learning. 



   129

Free Software Foundation (n.d.). http://www.fsf.org/ (website, accessed 3 January 2007). 
Fuller, M. (2003). Behind the Blip: Essays on the Culture of Software. Brooklyn, New 
            York, Autonomedia. 
Fuller, M. (2005). ‘Freaks of Number’, in Cox, G. and Krysa, J. (eds). Data Browser 02:  

Engineering Culture - On 'the Author as (Digital) Producer'. London, 
Autonomedia, pp. 161-175. 

Gamma, E., et al. (1995). Design Patterns: Elements of Reusable Object-Oriented  
 Software. Upper Saddle River, New Jersey, Addison & Wesley. 
Gere, C. (2002). Digital Culture. London, Reaktion Books. 
Goriunova, O. and Shulgin, A. (2004). read_me: Software Art & Cultures. Denmark, 
           Aarhus University Press. 
Graham, P. (2003). ‘Hackers and Painters’. http://www.paulgraham.com/hp.html  

(accessed 15 November 2006). 
Hansen, M. (2004). New Philosophy for New Media. Cambridge, Massachusetts and 
            London, MIT Press. 
Heidegger, M. (1978). ‘The Question Concerning Technology’, in Krell, D. F. 
            (ed).Martin Heidegger: Basic Writings. London, Thames & Hudson, pp. 284-317. 
            First published 1953. 
Horstmann, C. and Cornell, G. (2005). Core Java (Vols. 1 & 2). Santa Clara, California, 
            Sun Microsystems Press. 
Huyssen, A. (1986) After the Great Divide: Modernism, Mass Culture, Postmodernism. 

Bloomington and Indianapolis, Indiana University Press 
IPerG. (n.d.). Integrated Project on Pervasive Gaming. http://iperg.sics.se/ (accessed 25 
            November 2006). 
Jaschko, S. (2003) ‘Space-Time Correlations Focused in Film Objects and Interactive 
            Video’ in Shaw, J. and Weibel, P. (eds.) Future Cinema: The Cinematic 
            Imaginary After Film. Cambridge, Massachusetts, ZKM and The MIT Press, pp. 
            430-435.   
Johansson, T. D. (2004). ‘Mise en Abyme in Software Art: A Comment to Florian 
            Cramer’, in Goriunova, O. and Shulgin, A. (eds). read_me: Software Art & 
            Cultures. Arhus, Denmark, Aarhus University Press, pp. 150-159.  
Kant, I. (1980). Kant. ‘Great Books of the Western World’ Series, edited by Adler, J. and  

Brockway, W. Chicago, University of Chicago Press (Encyclopedia Britannica, 
Inc.). First published 1790. 

Kay, A. (2003). From video 'The History of the Personal Workstation' (1986), in 
            Wardrip-Fruin, N. and Montfort, N. (eds). New Media Reader. Cambridge, 
            Massachusetts, The MIT Press, pp. 393-404. 
Kay, A. and Goldberg, A. (2003). 'Personal Dynamic Media', in Wardrip-Fruin, N. and 

Montfort, N.  (eds). The New Media Reader. Cambridge, Massachusetts, The MIT 
Press, pp. 393-404. First published in 1977. 

Kittler, F. (1999). 'On the Implementation of Knowledge - Towards a Theory of 
            Hardware’.  http://www.hydra.umu.edu/kittler/implement.html (accessed 15 
             January 2007). 
Knuth, D. (1973 -1998). The Art of Computer Programming. Reading, Massachusetts,  

Addison-Wesley. 



   130

Krauss, R. (1999). A Voyage on the North Sea: Art in the Age of the Post-Medium  
Condition. London, Thames & Hudson. 

Leigh, A. and Atkinson, R. D. (2001). ‘Clear Thinking on the Digital Divide’.   
http://www.ppionline.org/documents/digital_divide.pdf (accessed 23 December 
2006) 

Levy, S. (1984). Hackers: Heroes of the Computer Revolution. New York, Anchor  
Press/Doubleday. 

Lillemose, J. (2004). ‘A Re-Declaration of Dependence - Software Art in a Cultural 
            Context It Can't Get out of’, in Goriunova, O. and Shulgin, A. (eds). read_me: 
            Software Art & Cultures. Arhus, Denmark, University of Aarhus, pp. 136-149. 
Macquarie (1992). The Macquarie Dictionary (Second Edition). Sydney, Macquarie 
            Library Pty Ltd. 
Malina, F. (1979). Visual Art, Mathematics & Computers. Oxford, Pergamon Press. 
Manovich, L. (1996). ‘The Death of Computer Art’.  

http://www.thenetnet.com/schmeb/schemb12.html (accessed 21 December 2006). 
Manovich, L. (2001). The Language of New Media. Cambridge Massachusetts, MIT 
            Press. 
Manovich, L. (2005). ‘Remixability & Modularity.’ http://www.manovich.net/ (accessed  

21 December 2006) 
Manovich, L. (2006). ‘Flash Generation’, in Chun, W. H. K. and Keenan, T. (eds). New  

Media/Old Media: A History and Theory Reader. London & New York, 
            Routledge, pp. 209-218. 
Nettime mailing list (1999). www.nettime.org (accessed 12 December 2006). 
Nietzsche, F. (1968). The Will to Power. New York, Vintage Books, Random House. 
Norman, J. (2005). From Gutenberg to the Internet: A Sourcebook on the History of  

Information Technology. Novato, California, historyofscience.com. 
Paul, C. (2003). Digital Art. London, Thames & Hudson. 
Plato (c. 380 BC). Ion. http://classics.mit.edu/Plato/ion.html (accessed 6 January 2007). 
Plato (1955). The Republic. Translated by D. P. Lee. London, Penguin Books. First 

Published c.360 BC. 
Read_Me 1.2 festival jury (2002). ‘Read_Me 1.2 Software Art/Software Art Games 
            festival jury statement’. http://www.macros-center.ru/read_me/adden.htm 
            (accessed 13 December 2006). 
Read_Me 1.2 festival organisers (2002). ‘Read_Me 1.2 Software Art/Software Art 
            Games festival call for entries’. 
             http://www.macros-center.ru/read_me/abouten.htm (accessed 13 
             December 2006).  
Reichardt, J. (ed) (1971). Cybernetics, Art and Ideas. New York, New York Graphic  

Society. 
Saint-Simon, H. (1975). Henri Saint-Simon 1760-1825: Selected Writings on Science,  

Industry and Social Organisation. Edited by K. Taylor. London, Croom Helm 
            Ltd. 
Salen, K. and Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals.  

Cambridge Massachusetts, The MIT Press. 
Selectparks (n.d.). [website]. http://www.selectparks.net (accessed 21 December 2006). 



   131

Shanken, E. A. (1998). ‘The House that Jack Built: Jack Burnham's Concept of 
           "Software" as a Metaphor for Art’. Leonardo Electronic Almanac 6(10).  

http://www.duke.edu/~giftwrap/House.html (accessed 23 July 2006). 
Shanken, E. A. (2004). ‘Art in the Information Age: Technology and Conceptual Art’, in  

Corris, M. (ed). Conceptual Art: Theory, Myth, Practice. Cambridge, England, 
Cambridge University Press, pp. 235-250. 

Small, P. (1996). Lingo Sorcery: The Magic of Lists, Objects and Intelligent Agents.  
Chichester, England, Wiley. 

Stallman, R. (n.d). [website]. http://www.stallman.org (accessed 2 January 2007). 
Stiegler, B. (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford California,  

Stanford University Press. 
Transmediale.01 Media Arts festival jury (2001). ‘Transmediale.01 Media Arts festival 
            jury statement’. http://transmediale.de/01/de/s_juryStatement.htm 
            (accessed 15 December 2006). 
Transmediale.01 Media Arts festival organizers (2001). ‘Call for Papers’.  

http://transmediale.de/01/de/s_juryStatement.htm (accessed 15 December 2006). 
Tribe, M. and Reena, J. (2006) New Media Art. Edited by U. Grosenick. Koln, 

Germany, Taschen. 
Turing, A. (1995). 'On Computable Numbers, with an Application to the  

Entscheidungsproblem' (extract), in Norman, M. (ed). From Gutenberg to the 
Internet: A Sourcebook on the History of Information Technology. Novato, 
California, historyofscience.com. First published in 1936. 

Weber, M. (1946). Max Weber: Essays in Sociology. Edited by H. H. Gerth. and C. W. 
            Mills. New York, Oxford University Press. 
Weibel, P. and Druckrey, T. (eds) (2001). Net Condition: Art and Global Media. 
            Cambridge, Massachusetts, ZKM and The MIT Press 
Whitelaw, M. (2004). Metacreation: Art and Artificial Life. Cambridge, Massachusetts, 
            MIT Press. 
Wikipedia (nd). ‘Constructivism’. http://en.wikipedia.org/wiki/Constructivism_(art) 
            (accessed 23 December 2006). 



   132



   133

Creative Works 

Adobe (n.d). Illustrator. [Computer program]. 
Arcangel, C. (2003). Super Mario Clouds. 
            http://www.beigerecords.com/cory/21c/21c.html   

(accessed 22 November 2006). 
Banzi, M. (n.d.) Arduino Microcontroller and Integrated Development Environment.  

[computer hardware and software]. http://www.arduino.cc (accessed 22 December 
2006). 

Blast Theory (2004). I Like Frank. Adelaide, South Australia, Adelaide Fringe Festival. 
            [new media work]. http://www.ilikefrank.com (accessed 16 December 2006). 
Blender (n.d.). [computer program]. http://blender.org (accessed 12 December 2006). 
Brooks, S. (2002). Global City Front Page. New York, Whitney Museum CODeDOC   

Exhibition. [software art work]. 
http://artport.whitney.org/commissions/codedoc/Brooks (accessed 12 December 
2006). 

Carmack, J. and Romero, J. (1993). Doom. [computer game]. 
Carmack, J. and Romero, J. (1996). Quake. [computer game]. 
Conway, J. (1970). Game of Life. First published in Gardner, M. mathematical games  

column, Scientific American, October 1970. [paper-based mathematical artificial 
life project]. 

Dagget, M. (2002). Deskswap. [software art work].  
http://www.markdaggett.com/get.php?page=deskswap (accessed 23 December 
2006). 

Duchamp, M. (1915-23). Large Glass – The Bride Stripped Bare by Her Bachelors, 
            Even. 
Eclipse Foundation (2004). Eclipse 3.0. [computer program]. 
Frasca, G. (2003). September 12, A Toy Story. [computer game]. 
Fry, B. and Reas, C. (2001, continuing) Processing. [computer program]  

http://processing.org (accessed 3 December 2006). 
Galloway, A. (2002). What You See is What You Get. New York, Whitney Museum  

CODeDOC  Exhibition. [software art work]. 
http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6 
December 2006). 

Glick, R. and Voevodin, L. (1999-2006). 24Hr Panoramas. [video art project]. 
I/O/D (1997). Web Stalker. London. [software art work]. http://bak.spc.org/iod/  

(accessed 3 January 2007). 
JODI (1998). SOD. [software art work]. http://sod.jodi.org/ (accessed 21 December  

2006). 
JODI (2002). Untitled Game. [software art work]. http://www.untitled-game.org  

(accessed 21 December 2006). 
JOGL (Java Bindings to Open GL API). (n.d.). [3D library]. https://jogl.dev.java.net/  

(accessed 18 December 2006). 
Karhalev, E. and Khimin, I. (2002). ScreenSaver. [software art work].  

http://www.404pro.com/desoft (accessed 16 December 2006). 



   134

Klima, J. (2002). Jack and Jill. New York, Whitney Museum CODeDOC Exhibition. 
[software art work]. http://artport.whitney.org/commissions/codedoc/index.shtml 
(accessed 6 December 2006). 

Levin, G. (2000). Audiovisual Environment Suite. [computer program].  
http://acg.media.mit.edu/people/golan/aves (accessed 2 January 2007). 

Levin, G. (2002). AxisApplet. New York, Whitney Museum CODeDOC Exhibition. 
[software art work]. http://artport.whitney.org/commissions/codedoc/index.shtml 
(accessed 6 December 2006). 

Lialina, O. (1996). My Boyfriend Came Back from the War. [net art work].  
http://myboyfriendcamebackfromth.ewar.ru/ (accessed 16 December 2006). 

Macromedia (n.d.). Director. [computer program]. 
Macromedia (n.d.). Flash. [computer program]. 
Maeda, J. (n.d.). Design by Numbers. Cambridge Massachusetts, MIT. [computer 
            program]. 
Marker, C. (1983). Sans Soleil. [film]. 
McCoy, K. (2002). Circler. New York, Whitney Museum CODeDOC Exhibition. 
            [software art work]. http://artport.whitney.org/commissions/codedoc/index.shtml 
            (accessed 6 December 2006). 
Napier, M. (1998). Shredder. [software art work].  

http://www.potatoland.org/shredder/ (accessed 6 December 2006). 
Napier, M. (2002). SpringyDotsApplet. New York, Whitney Museum CODeDOC 
            Exhibition. [software art work]. 
            http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6 
            December 2006). 
Nimoy, J. (2002). Textension. [software art work]. http://www.jtnimoy.com/textension/  

(accessed 2 January 2007). 
The Ogre (n.d.). [3D library]. http://ogre3d.org (accessed 14 December 2006). 
Paley, B. (2002). CodeProfiles. New York, Whitney Museum CODeDOC Exhibition. 

[software art work]. http://artport.whitney.org/commissions/codedoc/index.shtml 
(accessed 6 December 2006). 

Pfeiffer, P. (2001). The Long Count, in Hansen, M. (2004). New Philosophy for New 
            Media. Cambridge, Massachusetts and London, MIT Press, p. 30. [new media 
            artwork]. 
Reinhart, M. and Widrich, V. (1992-2002). tx-transform, in Shaw, J. and Weibel, P. 
            (eds). (2003). Future Cinema: The Cinematic Imaginary After Film. Cambridge, 

Massachusetts, ZKM and The MIT Press, pp. 442-443. [new media art work]. 
Sauter, J. and Lusebruk, D. (1995). ‘Invisible Shape of Things Past’, in Shaw, J. and 
            Weibel,  P. (eds.) (2003) Future Cinema: The Cinematic Imaginary After Film. 
            Cambridge, Massachusetts, ZKM and The MIT Press, pp. 436-439 [new media art 
            work] 
Schmitt, A. Vexation 1. [software art work].http://www.gratin.org/as/ (accessed 21  

December 2006). 
Snibbe, S. (2002). Tripolar. New York, Whitney Museum CODeDOC Exhibition. 
            [software art work] 

http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6 
December 2006). 



   135

Stallman, R. (1975). Emacs. [computer program]. 
Sutherland, I. (1962). Sketchpad. [computer program]. 
Tatlin, V. (1920). Monument to the Third International. [sculpture/architectural design]. 
Utterback, C. (2001-2). Liquid Time. in Shaw, J. and Weibel, P. (eds.) (2003) Future  

Cinema: The Cinematic Imaginary After Film. Cambridge, Massachusetts, ZKM 
and The MITPress, p.434. [new media art work]. 

Utterback, C. (2002). Linescape. New York, Whitney Museum CODeDOC Exhibition.  
 [software art work]. http://artport.whitney.org/commissions/codedoc/index.shtml 
(accessed 6 December 2006). 

Vertov, D. (1929). Man with a Movie Camera. [film] 
Ward, A. (2001). Signwave Auto-Illustrator. [software art work].  

http://www.gratin.org/as/ (accessed 12 November 2006). 
Wattenberg, M. (2002). ConnectApplet. New York, Whitney Museum CODeDOC  

Exhibition. [software art work]. 
http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6 
December 2006). 

Wisniewski, M. (2002). The Meaning of Life Expressed in Seven Lines of Code. New 
            York, Whitney Museum CODeDOC Exhibition. 
            http://artport.whitney.org/commissions/codedoc/index.shtml (accessed 6 
            December 2006). 
Xith3D (n.d.). [3D library]. http://www.xith.org (accessed 14 December 2006). 

 


